King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics SYLLABUS Semester II: 2012-2013(122)

Coordinator:	Dr. A. Bonfoh			
Course #:	MATH 470			
Title:	Partial Differential Equations			
Textbook:	Beginning Partial Differential Equation. by P. O'Neil. (Second Edition,			
	2008)			

Week	Date	Sec.	Topics	Suggested Homework Problems
1	Ion 26 20	1.1	Introduction, Linear first order PDEs,	2, 4, 7, 8 p3-4
	Jan 20-30	1.2	Characteristics	10, 11, 12 p11
2	E.1. 0. (1.3	Quasilinear first order equations, The Cauchy	1, 3, 5 p15-16,
	Feb $2-6$	1.4	problem, Characteristic method, General solutions	1, 3, 5, 7, 9, p22
3		2.1	Second order PDEs in two variables: Classification	1, 3, 5, 7, 9 p25
		2.2	The Hyperbolic canonical form	2(a, c), 3 p29
		2.3	The Parabolic canonical form	2, 3 p32-33
	Feb 9–13	2.4	The Elliptic canonical form	1, 3, 5, 6, 7, 9p36-37
		2.5	Some equations of mathematical physics	1 n45
		2.6	Second order Cauchy problem	1, 2, 6, 7p48-49
		27	Characteristics and the Cauchy problem	1 2 3 4p55
4		2.7	The wave equation : d'Alembert's solution of the	1, 2, 3, 4p33
		4.1	the Cauchy problem	3, 5, 9,10, 13p116117
	Feb 16-20	4.0	D'Alembert solution as a sum of waves	1, 2, 3, 4p125-126
		4.2	The characteristic triangle domain of dependence	1, 2 p130
		4.3	The wave equation on a half-line	1 2 2 7 8 124
		4.4	A non-homogeneous problem on helf real line	1, 2, 3, /, 8p134
5		4.6	A non nonlogeneous problem on nan real line Fourier series solutions on a closed interval	1, 2, 3, $10p140$
	Feb 23–27	4.8	A non homogeneous problem on a closed interval	1, 5, 11, 14, 15 p157-159 2, 3, 7, 10, 11 p164-167
		4.9	The Cauchy problem by Fourier integral	1. 2. 3. 7. 8. 9p171-172
		4.10		, , - , . , - , - r
			First Exam: Sunday, February 24, 6:00–8:00	pm
6	Mar 2– 6	4.11	The wave equation in two space dimensions	1, 2, 3p1/0 2 3p181
		4.12	The Kirchoff-Poisson solution	1p183
		4.13	Hadamard's method of descent	1 4 107 100
7	Mar 9–13	5.1 5.2	The Cauchy problem and Initial conditions	1, 4 p18/-188 2 p192
		5.3	The weak maximum principle	1, 3, 8, 9, 10, 11, 16p205-206
		<i></i>	Solutions on bounded intervals	
8	Mar 16–20	5.4	The heat equation on the real line	4, 5, 9, 12p215-217
		5.5	The heat equation on the half-line	1, 4, 8, 12p222-223
		Mid	term Vacation: Thursday, March 21 – Friday, Ma	arch 29, 2012
9	Mar 30 –	5.7	The non homogeneous heat equations	6, 8p233-234
	Apr 3	5.8	The heat equation in two space variables	1, 3, 5p236-237
10	Apr 6 –10	6.1	Dirichlet and Neumann :setting of the problem	1, 2, 8 p246
		6.2	Some harmonic functions	3, 4, 5, 6 p250
			Second Exam: Tuesday, April 9, 6:008:00	pm
11	Apr 13–17	6.3	Representation theorems	1, 2p257
		6.4	Maximum principle, Mean value property	2, 4, 4, 5, 6 p261-262
12	Apr 20 –24	6.5	Existence, Uniqueness and Well-posedness	1 p266
		6.6	Dirichlet problem for a rectangle	1, 2, 6p268-269
		6.7	Dirichlet problem for a disk	4, 0, 7, 8 p 2 7 1 3 4 7 p 275
		6.8	Poisson's integral representation for a disk	o, ,, , , , , , , , , , , , , , , , , ,
13	Apr 27 –	6.9	Dirichlet problem for the upper half-plane	1, 4 p279
	May 1	6.10	Dirichlet problem for the right quarter-plane	1 p282
	-	6.11	Dirichlet problem for a rectangular box	1 p284

14	May 4-8	6.12	The Neumann problem	4, 5, 7 p287		
		6.13	The Neumann problem for a rectangle	1, 4 p290		
		6.14	The Neumann problem for a disk	1, 4 p293-294		
		6.15	The Neumann problem for the upper half-plane	1, 3, 5 p295		
15	May11 - 15	6.16	Green's function for a Dirichlet problem	1, 2, 5, 6, 12, 16p301-302		
			Review and catch-up			
Final Exam: Wednesday, May 22, 2013 at 8:00am						

Policies

Exams:

• Any student **missing a major exam** with or without excuse **will not be given a Make-Up Exam**.

However, a student missing an Exam with an official excuse from the "Deanship of Students Affairs" will be compensated according to the following policy.

Exam Missed by the Student: Grade to be compensated := ExM,	Ave of Exam: AveM
Exam taken by Student: Grade obtained = ExT,	Ave of Exam: Ave T
Final Exam: Grade obtained:= ExT,	Ave of Exam: Ave F
ExM = AveM + [10(ExT-AveT)+14(ExT-AveF)]/24	

- Home work (20%)
- 1-section presentation (5%)
- Class participation + Attendance (5%)
- Major 1 and 2 (20% each)
- **Final Exam** (30%): The final exam will be comprehensive.

Attendance:

- Attendance is compulsory. KFUPM policy with respect to attendance will be strictly enforced.
- Any student accumulating 9 unexcused absences will be awarded DN Grade in the course.