Name

1. [10pts] (a) Let d = (455, 196). Find d and find integers x and y such that 455x + 196y = d (b) Show that there are infinitely many integers m, n such that 4m - 55n = 1

2. [15pts] (a) Show that if a, b are coprime integers then $(2ab, a + b) \leq 2$.

(b) Show that if a, b, c are positive integers and p is a prime such that $[a, b] = p^c(a, b)$ then either $a \mid b$ or $b \mid a$

(c) Give an example of positive integers a, b, m with [a, b] = m(a, b) but such that $a \nmid b$ and $b \nmid a$.

3. [10pts] Let m be a positive integer and a be an integer such that (a, m) = 1

(a) Prove that the set $\{a + 1, 2a + 1, \dots, ma + 1\}$ is a complete residue system mod m

(b) If $\{r_1, r_2, \ldots, r_k\}$ is a reduced residue system mod m, is it true that $\{r_1a + 1, r_2a + 1, \ldots, r_ka + 1\}$ is also a reduced residue system mod m? Either prove or give a counterexample.

4. [15pts] (a) Solve the system of congruences

 $3x \equiv 2 \pmod{5}$ $2x \equiv 1 \pmod{7}$ $4x \equiv 5 \pmod{11}$

- (b) Solve the congruence $x^3 + x + 2 \equiv 0 \pmod{25}$
- (c) Solve the congruence $x^{12} + x^{11} + x^{10} \equiv 2 \pmod{11}$