KFUPM - Department of Mathematics and Statistics MATH 345, Term 122 Final Exam (Out of 100), Duration: 180 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (10 points 4-3-3): Let G be the multiplicative group of all invertible 2×2 matrices, H the subgroup of G consisting of all 2×2 matrices A such that det A = 1.

(1) Find the center $\mathcal{Z}(G)$ of G.

(2) Prove that $\mathcal{Z}(H) = H \cap \mathcal{Z}(G)$.

(3) True or false: Any subgroup of a non-abelian group is not abelian. Justify.

Exercise 2 (15 points 5-5-5): Let G be a finite abelian group with |G| = pqwhere p and q are distinct positive prime integers. Set $H_1 = \{x \in G | x^q = e\}$ and $H_2 = \{ x \in G | x^p = e \}.$

- (1) Prove that H_1 and H_2 are incomparable under the inclusion. (2) Are H_1 and H_2 cyclic groups? Find their orders.
- (3) Prove that G is the internal direct product of H_1 and H_2 .

Exercise 3 (15 points 5-5-5): Let R be a commutative ring with unity, I an ideal of R and set $\sqrt{I} = \{a \in R | a^n \in I \text{ for some positive integer } n\}.$

- (1) Prove that \sqrt{I} is an ideal of R containing I.
- (2) Prove that if P is a prime ideal of R, then $P = \sqrt{P}$.
- (3) If $R = \mathbb{Z}$ and $I = 4\mathbb{Z}$, find \sqrt{I} .

Exercise 4 (15 points 5-5-5): Let R be a commutative ring and $\phi : R[X] \longrightarrow R$ defined by $\phi(f) = a_0$ whenever $f = a_0 + a_1 X + \dots + a_n X^n$.

(1) Prove that ϕ is a ring homomorphism. Is ϕ onto?

(2) Find the kernel $Ker(\phi)$ and show that R[X]/(X) is isomorphic to R((X) is the ideal of R[X] generated by X).

(3) Under which condition (X) is a prime ideal of R[X] (resp. a maximal ideal of R[X])?

Exercise 5 (10 points, 5-5): Let R be an integral domain. Prove that R[X] is a *PID* (Principal Ideal Domain) if and only if R is a field.

- **Exercise 6** (15 points, 5-5-5): Let $f = a + bX + X^2$ be a polynomial in $\mathbb{Z}[X]$. (1) Prove that f is reducible over \mathbb{Z} if and only if f(x) has a root in \mathbb{Z} . (2) Let p be a positive prime integer and set $g = a + bX + pX^2$ where p do not divide ab. Prove that g is reducible over \mathbb{Z} only if g has a root in \mathbb{Z} . (3) Application: Use (2) to prove that $2X^2 + X + 1$ is irreducible over \mathbb{Z} . Is the
- Mod p Test applicable? Justify.

Exercise 7 (10 points, 5-5): Let D be an integral domain.

- (1) Prove that every prime element of ${\cal D}$ is irreducible.
- (2) Assume that D is a *PID*. Prove that every irreducible element of D is prime.

7

- **Exercise 8** (10 points, 5-5): Let $D = \mathbb{Z}[\sqrt{-5}]$. (1) Prove that $1 + \sqrt{-5}$ and $1 \sqrt{-5}$ are irreducible. (2) Is D a UFD (Unique Factorization Domain)? Justify.
- 8