KFUPM - Department of Mathematics and Statistics MATH 345, Term 122 Exam III (Out of 80), Duration: 120 minutes

NAME: ID:

Solve the following Exercises.

Exercise 1 (15 points 5-5-5): Let R and S be subrings of a ring T.

(1) Prove that $R \cap S$ is a subring of T.

(2) Under which condition $R \cup S$ is a subring of T?

(3) Find an example of a ring T with two subrings R and S such that $R \cup S$ is not a subring of T.

Exercise 2 (15 points 5-5-5): Let R be a commutative ring satisfying the property (**P**): For every $0 \neq a \in R$, and for every $b, c \in R$, $ab = ac \Rightarrow b = c$.

(1) Is R an integral domain? Justify.

(2) If R has a unity element, is R an integral domain?

(3) Give an example of a commutative ring R which satisfies the property (**P**) but which is not an integral domain.

Exercise 3 (10 points 5-5): Let R be a commutative ring with unity.

(1) Prove that if R is of characteristic zero, then \mathbb{Z} is isomorphic to a subring of R. (2) Prove that if R is of prime characteristic p, then $\mathbb{Z}/p\mathbb{Z}$ is isomorphic to a subring of R. **Exercise 4** (10 points 5-5): Let R be a commutative ring and M and N two distinct maximal ideals of R.

(1) Prove that M + N = R, and $M \cap N = MN$.

(2) Give an example of a commutative ring with two maximal ideals M and N such that M + N = R.

Exercise 5 (15 points, 5-5-5):

- Let ${\cal R}$ be an integral domain and ${\cal K}$ its field of fractions.
- (1) Prove that K is the smallest field containing R.
- (2) Prove that K is the intersection of all fields containing R.
- (3) What is the field of fractions of the ring $R = \mathbb{Z}(\sqrt{2}) = \{a + b\sqrt{2}, a, b \in \mathbb{Z}\}.$

Exercise 6 (15 points, 5-5-5):

Let $R = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}$, and $S = \mathbb{Q}(i) = \{a + ib, a, b \in \mathbb{Q}\}$. (1) Prove that R is a field.

- (2) Prove that S is a field.
- (3) Are R and S comparable.
- 6