KFU	PM	Semester 122	
Dept. Math. &Stat.		A.Y:2012/2013	
Name	•	•••••••••••	
ID:	•••••••••••••••••••••••••••••••••••••••	••••••	
Exerc	ise 1		
dete	rmine which of the following are subspa	ces of \mathbb{R}^3 .	
(a)	all vectors of the form $(a, 0, 0)$		
(b)	all vectors of the form $(a, 1, 1)$		
<i>(</i>)	11 () () () () () () () () () (
(c)	all vectors of the form (a, b, c) , where $b =$	a+c	
(d)	all vectors of the form (a, b, c) , where $b =$	a+c+1	
` /	(6, 5, 6)		
(e)	all vectors of the form $(a, b, 0)$		

Quiz N°1 Math 302_122 (February 18, 2013)

Exercise 2

Find a set to span the given subspace of the given space.

(a) the xz-plane in \mathbb{R}^3

(b)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 3x + 2y + z = 0 \right\}$$
 in \mathbb{R}^3

(b)
$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 3x + 2y + z = 0 \right\}$$
 in \mathbb{R}^3
(c) $\left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \mid 2x + y + w = 0 \text{ and } y + 2z = 0 \right\}$ in \mathbb{R}^4

Quiz $N^{\circ}1$ Math 302_122 (February 18, 2013)

Exercise 3

Find a basis for the solution set of this system.

$$x_1 - 4x_2 + 3x_3 - x_4 = 0$$

$$2x_1 - 8x_2 + 6x_3 - 2x_4 = 0$$

Quiz N°1 Math 302_122 (February 18, 2013)

Exercise 4

Find the rank of each matrix.

(a)
$$\begin{pmatrix} 2 & 1 & 3 \\ 1 & -1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ -2 & 2 & -4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 3 & 2 \\ 5 & 1 & 1 \\ 6 & 4 & 3 \end{pmatrix}$

(d)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$