KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 302: FINAL EXAM, SEMESTER (122), MAY 20, 2013

Time: $08{:}00$ to $11{:}00~\mathrm{am}$

Name :

ID : Section :

Exercise	Points
1	20
2	20
3	20
4	20
5	20
6	20
7	20
Total	140

Exercise 1. Let $A = \begin{pmatrix} 5 & -4 & 4 \\ 12 & -11 & 12 \\ 4 & -4 & 5 \end{pmatrix}$.

- (1) Show that $\det(A \lambda I) = -(\lambda 1)^2(\lambda + 3)$.
- (2) Is A diagonalizable? If yes, construct a matrix P that diagonalizes A.

3

Exercise 2. Use Divergence theorem to evaluate the flux $\int_{S} \int_{S} F \cdot \mathbf{n} \, dS$ of

 $F(x, y, z) = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$

across the surface S given by $z = 4 - x^2 - y^2$ for $z \ge 3$.

Exercise 3. Let $f(z) = Re(z)|z|^2$. We denote by x = Re(z), y = Im(z), u(x, y) = Re(f(z)) and v(x, y) = Im(f(z)).

- (1) Find all (x, y) at which u, v satisfy Cauchy-Riemann Equations.
- (2) Show that f(z) is differentiable at $z_0 = 0$.

Exercise 4. Find all complex numbers z such that $\sin z = 2$.

Exercise 5. Use Cauchy Integral Formula to evaluate the integral

$$\oint_{\mathcal{C}} \frac{e^z \sin z}{(z-2)^3} \, \mathrm{d}z,$$

where C is the positively oriented circle |z| = 3.

Exercise 6. Let $f(z) = ze^{\frac{2}{z^2}}$

- (1) Find the Laurent series of the function f(z) about $z_0 = 0$ in the region 0 < |z|.
- (2) Use (1) to evaluate the contour integral

$$I = \oint_{\mathcal{C}} f(z) \, \mathrm{d}z,$$

where C is the positively oriented circle |z| = 1.

Exercise 7. Use the residue theorem to evaluate

(1)
$$\oint_{\mathcal{C}} \cot(z) dz$$

where \mathcal{C} is the positively oriented circle $|z| = 1$.

(2)
$$\oint_{\mathcal{C}} \frac{e^z}{z(z-2)^3} \, \mathrm{d}z$$

where \mathcal{C} is the positively oriented circle $|z| = 3$.