KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 302: EXAM II, SEMESTER (122), APRIL 06, 2013

Time: 08 : 00 to 10: 00 $\rm pm$

Name :

ID : Section :

Exercise	Points
1	10
2	20
3	20
4	
5	
6	
Total	100

Exercise 1.

(a) Let \mathcal{C} be the curve with position vector $\mathbf{r}(t) = (3\cos(t^2), 3\sin(t^2)), 0 \le t \le \frac{\pi}{2}$. Evaluate the length $l(\mathcal{C})$ of the curve \mathcal{C} . (b) Given the surface S defined by: $z = 2x^2 + y^2 - 1$. Find an equation of the tangent plane to the surface S at (1, 1, 2).

Exercise 2. Let $F(x, y) = (e^{-x^2} \sin x + y^3)\mathbf{i} + (x^2y^2 + e^{-y^2} \sin y)\mathbf{j}$ be a force moving a particle from the point P = (1, -1) to the point Q = (1, -1) along the positively oriented simple closed path $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3 \cup \mathcal{C}_4 \cup \mathcal{C}_5$, where

- C_1 is the line segment joining (1, -1) and (1, 1),
- C_2 is the line segment joining (1, 1) and the origin (0, 0),
- C_3 is the line segment joining (0,0) and (-1,1),
- C_4 is the line segment joining (-1, 1) and (-1, -1),
- C_5 is the line segment joining (-1, -1) and (1, -1).
- (1) Graph the path \mathcal{C} and precise the direction of the motion.
- (2) Using Green's theorem, evaluate the work done by the force F in moving the particle.

Exercise 3. Let C be the curve obtained by intersecting the plane z = x and the cylinder $x^2 + y^2 = 1$, oriented counter-clockwise when viewed from above. Let S be the portion of the plane that lies inside the cylinder, oriented with the upward-pointing normal. For $F(x, y, z) = x\mathbf{i} + z\mathbf{j} + 2y\mathbf{k}$, verify Stokes' theorem by computing both

$$\oint_{\mathcal{C}} F.dR \quad \text{and} \quad \int_{S} \int_{S} (Curl(F).\mathbf{n}) dS.$$

Exercise 4.

Exercise 5.

Exercise 6.