King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 280-01(Term 122) Exam II

NAME:

ID #:

SHOW ALL WORK FOR FULL CREDIT

Question	Score
1 (10 pts)	
2 (12 pts)	
3 (12 pts)	
4 (10 pts)	
5 (14 pts)	
6 (10 pts)	
7 (12 pts)	
8 (12 pts)	
9 (8 pts)	
Total (100)	

Q1. Let $L : \Re^2 \to \Re^2$ be a linear transformation and let A be the standard matrix representation of L. Define L^2 by $L^2(x) = L(L(x))$ for all $x \in \Re^2$. Show that L^2 is a linear transformation and its matrix representation is A^2

Q2. Let $L: P_3 \to P_3$ be a linear transformation defined by

$$L(p(x)) = xp'(x)$$

Find the kernel and range of L.

Q3. let

$$S = \{u_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, u_2 = \begin{bmatrix} 1\\2\\-3 \end{bmatrix}, u_3 = \begin{bmatrix} 5\\-4\\-1 \end{bmatrix}\}$$

(a) Show that S is orthogonal and S is a basis for \Re^3 (b) Write $(1, 5, -7)^T$ as a linear combination of u_1, u_2, u_3 .

Q4. Find k so that f(t) = t + k and $g(t) = t^2$ are orthogonal with $(f,g) = \int_0^1 f(t)g(t)dt$

Q5.Find an **orthonormal** basis for the subspace U of \Re_4 spanned by the vectors:

$$v_1 = (1, 1, 1, 1), v_2 = (1, 1, 2, 4), v_3 = (1, 2, -4, -3)$$

Q6. let w_1 and w_2 be two nonzero **orthogonal** vectors in V and let v be any vector in V. If $u = v - c_1w_1 - c_2w_2$ is **orthogonal** to w_1 and w_2 then find c_1 and c_2 Q7. Let $L: \Re^2 \to \Re^2$ be a linear transformation. Let $(1,2)^T, (0,1)^T$ be a basis for \Re^2 . Suppose $L(1,2)^T = (2,3)^T$ and $L(0,1)^T = (1,4)^T$, find a formula for $L(a,b)^T$ Q8. Let u and v be any two vectors in an inner product space V. (a) state the **Cauchy-Schwarz** inequality.

(b) state the **Triangle** inequality

a) () Let $L: \Re^n \to \Re^2$ be a linear transformation. If $L(x_1) = L(x_2)$, then the vectors x_1 and x_2 must be equal

b) () If $L:V\to V$ is a linear transformation and $x\in KerL$ then L(v+x)=L(v) for all $v\in V$

c) () Let $L: \Re^n \to \Re^n$ be a linear transformation. If A is the standard matrix representation of L, then an $n \times n$ matrix B will also be a matrix representation of L if and only if B is similar to A

d) () Let A, B, and C be $n \times n$ matrices. If A is similar to B and B is similar to C, then A is similar to C.