King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 280-01(Term 122) Exam I

NAME:

ID #:

SHOW ALL WORK FOR FULL CREDIT

Question	Score
1	
23	
4	
5	
6	
7	
8	
9	
10	
Total	

Q1. Using the Gauss-Jordan reduction method find all solutions of the following homogeneous system:

 $\begin{array}{rcl} x_1+x_2+x_3+x_4 &=& 0\\ 4x_1-x_2+3x_3+x_4 &=& 0\\ 3x_1+5x_3+x_4 &=& 0 \end{array}$

Q2. determine if the following vectors are linearly independent:

a)

[4]		[-8]		[0]
1	,	5	,	7
0		2		2

b)

 $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}$

Q3. let

$$S = \left\{ \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 11\\10\\7 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix}, \begin{bmatrix} 7\\6\\4 \end{bmatrix} \right\}$$

Let W = Span S, where W is a subspace of \Re^3 . Find a subset of S that is a basis for W Q4. Let A be n x n nonsingular matrix. Show that Ax = b has a solution for all b and show that the solution is unique.

Q5. Let S be a subset of \Re^3 such that

$$S = \{ (a \ b \ c)^T \in \Re^3 \mid c = 2a + b \}$$

Show that S is a subspace of \Re^3

Q6. let

$$S = \left\{ \begin{bmatrix} 1\\-2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\5 \end{bmatrix}, \begin{bmatrix} 3\\-2\\0 \end{bmatrix} \right\}$$

be an ordered basis for \Re^3 . Let $v \in \Re^3$ such that $[v]_S = [2 - 4 3]^T$. Find v

Q7. Find the inverse of the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 \\ -1 & -3 & 2 \\ -1 & -2 & 1 \end{bmatrix}$$

Q8. Determine if the vectors $[2\ 2\ 2]^T$, $[0\ 0\ 3]^T$, $[0\ 1\ 1]^T$ form a basis for \Re^3

Q9. Let V and W be vector spaces and let L be the linear transformation $L: V \to W$. State and **explain** all the properties that must be satisfied in order for L to be an isomorphism of V onto W

Q10. TRUE or FALSE

(for ${\bf False}$ statement give a counter example)

a) () AB = BA for all square matrices A and B of the same size.

b) () Any collection of n linearly independent vectors in \Re^n form a basis for \Re^n .

c) () The set of all n x n nonsingular matrices is closed under addition.

d) () \Re^2 is a subspace of \Re^3 .

e) () For any 2 x 2 matrices A and B we have $(A+B)^2 = A^2 + 2AB + B^2$

f) () Any n vectors which span a vector space V of dimension n form a basis for V.