King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260

Take Home-Test I, Semester II, 2012-2013

Name:		
ID:	Section:	

- 1. For each of the following differential equations: identify the dependent and independent variables, give the order and state whether it is linear or nonlinear.
 - (a) $x^2y'' + 2xy' + 5y = 0$;
 - (b) $x\frac{dx}{dt} + 3t^2 = c$, c is a constant;
 - (c) xdy + ydx = 0.

2. Verify that $x^2y^4 + x^3 - 27 = 0$ is a solution of $4xy^3 \frac{dy}{dx} + 2y^4 + 3x = 0$.

3. Find general solutions of the following differential equations:

(a)
$$x \tan y - y' \sec x = 0$$
;

(b)
$$y'\cos x = y\sin x + \sin 2x, -\frac{\pi}{2} < x < \frac{\pi}{2};$$

(c)
$$ydx - (x + \sqrt{y^2 - xy})dy = 0;$$

(d)
$$(3x^2 - 2xy + 3y^2)dx = 4xydy$$
;

(e)
$$(ye^{xy} - 2y^3)dx + (xe^{xy} - 6xy^2 - 2y)dy = 0;$$

(f)
$$2x^3ydx + (x^4 + y^4)dy = 0, x > 0, y > 0.$$

- 4. For each of the following differential equations: find a suitable substitution and then identify the resulting equation. (DO NOT SOLVE THE RESULT EQUATION AFTER FINDING THE RIGHT SUBSTITUTION)
 - (a) $\cos x dx (\cos y \sin x y \sin^2 x) dy$;
 - (b) $y' = \cos(x + y 3)$;
 - (c) $(2\sqrt{x+y}+1)dx + (1-x-y)dy = 0$.