King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

$\begin{array}{c} {\rm Math} \ 201 \\ {\rm Final} \ {\rm Exam} - 2012 – 2013 \ (122) \end{array}$

Allowed Time: 180 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.

Part I: Written Problems

Question #	Grade	Maximum Points
1		14
2		14
3		12
4		14
5		16
Total:		70

Part II: MCQ Problems

Question #	Answer	Grade	Maximum Points
6	A		07
7	\mathbf{A}		07
8	A		07
9	A		07
10	A		07
11	A		07
12	A		07
13	A		07
14	A		07
15	A		07
Total:			70

Q:1 (14 points) Find the critical points of the function

$$f(x,y) = 7x + 4x^2 + y^2 + 2xy^2 + y^4.$$

Classify each point as local maximum, local minimum or saddle point.

Sal:
$$f_x = 7 + 8x + 2y^2$$
; $f_{xx} = 8$
 $f_y = 2y + 4xy + 4y^3$; $f_{yy} = 2 + 4x + 12y^2$
 $f_{xy} = 4y$
 $f_{y} = 0 \Rightarrow y = 0 \text{ or } 2y^2 = -2x - 1$

At $y = 0$, $f_x = 0 \Rightarrow x = -\frac{7}{8}$

At $2y^2 = -2x - 1$, $f_{x=0} \Rightarrow 7 + 8x - 2x - 1 = 0 \Rightarrow x = -1$

Critical points are $(-\frac{7}{8}, 0)$, $(-1) - \frac{1}{12}$, $(-1) - \frac{1}{12}$

At $(-1) - \frac{1}{12}$; $f_{xx} f_{yy} - (f_{xy})^2 = (8)(4) - 8 > 0$
 $-(-1) + \frac{1}{12}$; $f_{xx} f_{yy} - (f_{xy})^2 = 24 > 0$ Localmin.

At $(-\frac{1}{8}, 0)$; $f_{xx} f_{yy} - (f_{xy})^2 = (8)(2 - \frac{1}{2}) - 0 = -12 < 0$
 $\Rightarrow (-\frac{7}{8}, 0)$ is a soddle point.

Q:2 (14 points) Use Lagrange multipliers to find the maximum and minimum values of

$$f(x, y, z) = x^2 y^2 z^2$$

subject to the constraint $x^2 + y^2 + z^2 = 1$.

Sal. Salve
$$\nabla f = \lambda \nabla f$$
 with $x^2 + y^2 + z^2 = 1$.

$$\nabla f = (2xy^2z^2, 2yx^2z^2, 2zx^2y^2)$$

$$\nabla (x^2+y^2+z^2) = (2x, 2y, 2z)$$

$$\nabla f = \lambda \nabla f \Rightarrow$$

$$2xy^2z^2 = \lambda 2x$$

$$2yx^2z^2 = \lambda 2y$$

$$2zx^2y^2 = \lambda 2z$$
If x, y, z one all $\neq 0$, then
$$y^2z^2 = x^2z^2 = x^2y^2 = \lambda$$

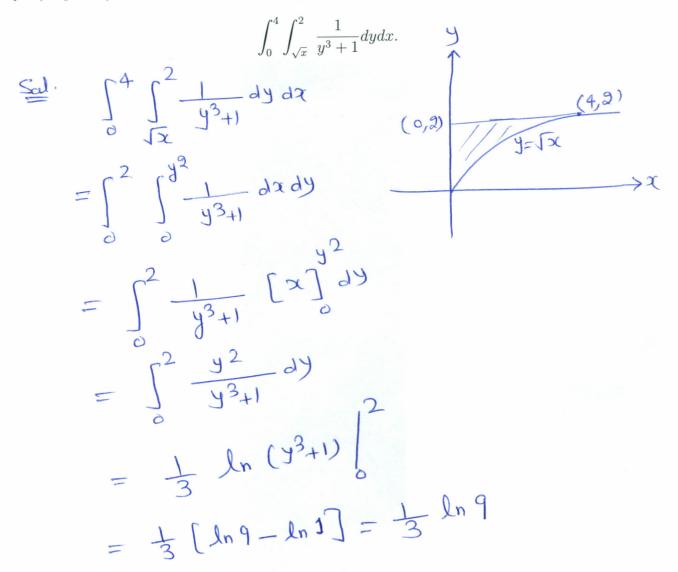
$$\Rightarrow x^2 = y^2 = z^2$$
Now $x^2 + y^2 + z^2 = 1 \Rightarrow 3x^2 = 1 \Rightarrow x^2 = \frac{1}{3}$

$$\Rightarrow y^2 = \frac{1}{3}, \quad z^2 = \frac{1}{3} \quad \text{lef}(x,y,z) = \frac{1}{27}$$
If one of x, y, z is zero, then $f(x,y,z) = 0$

$$\text{Maximum value} = \frac{1}{27}$$

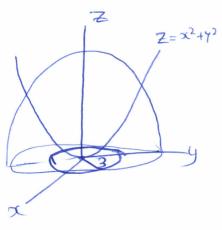
$$\text{Minimum value} = 0$$

Q:3 (12 points) Evaluate the iterated integral



Q:4 (14 points) Find the volume of the solid bounded by the paraboloids $z = x^2 + y^2$ and $z = 36 - 3x^2 - 3y^2$.

Sal. The projection of the Salid in the xy-plane is a circle with radious given by Salving the equation $x^2 + y^2 = 36 - 3x^2 - 3y^2$ or $x^2 + y^2 = 9$



$$x^{2} + y^{2} = 36 - 3x^{2} - 3y^{2}$$

$$x^{2} + y^{2} = 9$$

$$x^{2} + y^{2} = 9$$

$$= \iiint_{0}^{3} \sqrt{369x^{2}}$$

$$= \iint_{0}^{3} \sqrt{36-4x^{2}} dx d0$$

$$= \int_{0}^{2\pi} \sqrt{3} \sqrt{36-4x^{2}} dx d0$$

$$= \int_{0}^{2\pi} (18x^{2} - x^{2}) \int_{0}^{3} d0$$

$$= \int_{0}^{2\pi} 81 d0$$

$$= 162\pi$$

Q:5 (16 points) Use spherical coordinates to evaluate

$$\int \int \int_E (x^2 + y^2) dV,$$

where E is the region bounded above by the sphere $x^2 + y^2 + z^2 = 1$ and below by the cone $z = \frac{1}{\sqrt{3}}\sqrt{x^2 + y^2}$

Sal.
$$x^{2} + y^{2} + z^{2} = 1$$
 $\Leftrightarrow f = 1$
 $Z = \frac{1}{\sqrt{3}} \int x^{2} + y^{2}$
 $\int \cos \phi = \frac{1}{\sqrt{3}} \int x^{3} \sin \phi + \cos \phi = \frac{\pi}{3}$

$$\int \int \int (x^{2} + y^{2}) dv = \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3}$$

$$= 2\pi \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \int \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \int \frac{\pi}{3} \sin^{3} \phi d\phi = \frac{\pi}{3} \int \frac{\pi}{3} \int$$

Q:6 (7 points) The slope of the tangent line to the polar curve $r=1+2\cos\theta$ at the point $\theta=\frac{\pi}{3}$ is

- $(A) \ \frac{\sqrt{3}}{9}$
- $(B) \ \tfrac{1}{\sqrt{3}}$
- $(C) \frac{1}{3}$
- $(D) \ 3\sqrt{3}$
- $(E) \frac{\sqrt{3}}{9}$

Q:7 (7 points) The area of the region that lies inside both curves $r = \cos \theta$ and $r = \sin \theta$ is

- $(A) \frac{1}{8}(\pi 2)$
- (B) $\frac{1}{8}(\pi+2)$
- $(C) \frac{1}{8}(\pi 2)$
- $(D) \frac{1}{8}(\pi + 2)$
- $(E) \frac{1}{8}(2\pi 2)$

Q:8 (7 points) The area of the surface obtained by rotating the curve parametrized by $x=3t-t^3,\ y=3t^2,\ 0\leq t\leq 1$ about the x- axis is

- $(A) \frac{48\pi}{5}$
- $(B) \frac{18\pi}{15}$
- $(C) \frac{24\pi}{15}$
- $(D) \frac{16\pi}{15}$
- $(E) \frac{\pi}{15}$

Q:9 (7 points) The value of k for which the vectors $\overrightarrow{a}=<1,4,-7>, \overrightarrow{b}=<4,0,2>$ and $\overrightarrow{c}=< k,0,1>$ are coplanar is

- (A) 2
- (B) 2
- (C) 1
- (D) 1
- (E) 0

Q:10 (7 points) Where does the line that passes through (1,0,1) and (4,-2,2) intersect the plane x+y+z=6?

- (A) (7, -4, 3)
- (B) (1,2,3)
- (C) (3,4,-1)
- (D) (-1,4,3)
- (E) (6,4,-4)

Q:11 (7 points) The equation $x^2 - y^2 + z^2 - 4x - 2y - 2z + 4 = 0$ represents

- (A) a cone
- (B) a hyperboloid of two sheets
- (C) a hyperboloid of one sheet
- (D) an elliptic paraboloid
- (E) a sphere

Q:12 (7 points) Consider the surface

$$x^2z + 3yz^2 + 3xyz = 7.$$

Let 5x + By + Cz = D be an equation of the tangent plane to the given surface at (1, 1, 1). The value of B + C + D is

- (A) 37
- (B) 32
- (C) 34
- (D) 42
- (E) 39

Q:13 (7 points) The maximum rate of change of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at the point (1, 1, 1) is

- (A) 1
- (B) 3
- (C) 4
- (D) 5
- (E) 6

Q:14 (7 points) Consider

$$f(x,y) = \begin{cases} \frac{x^2y^3}{2x^2+y^2}, & (x,y) \neq (0,0) \\ 1, & (x,y) = (0,0) \end{cases}$$

- (A) f(x,y) has a removable discontinuity at (0,0)
- (B) $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.
- (C) f(x,y) is continuous at (0,0)
- (D) f(x,y) is continuous everywhere
- (E) f(x,y) is continuous

Q:15 (7 points) If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$ and $z = r^2s$ sint, then the value of $\frac{\partial u}{\partial s}$ when r = 1, s = 1, t = 0 is

- (A) 6
- (B) 30
- (C) 4
- (D) 25
- (E) 10