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Instructions:
1. Write clearly and legibly. You may lose points for messy work.
2. Show all your work. No points for answers without justification.

3. Calculators and Mobiles are not allowed.

Part I: Written Problems

Question # Grade Maximum Points
1 14
2 14
3 12
4 14
5 16
Total: 70

Part II: MCQ Problems

Question # Answer Grade | Maximum Points
6 A 07
7 A 07
8 A 07
9 A 07
10 A 07
11 A 07
12 A 07
13 A 07
14 A 07
15 A 07
Total: 70




Q:1 (14 points) Find the critical points of the function
f(z,y) = Tz + 42 + y* + 2z9° + .

Classify each point as local maximum, local minimum or saddle point.
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Q:2 (14 points) Use Lagrange multipliers to find the maximum and minimum values of
f(z,y,2) = 2°y*2
subject to the constraint z? + y? + 22 = 1.
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Q:3 (12 points) Evaluate the iterated integral

/ /f y—+1—dydx Y
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Q:4 (14 points) Find the volume of the solid bounded by the paraboloids z = 2% + y?
and z = 36 — 3z% — 3y°.
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Q:5 (16 points) Use spherical coordinates to evaluate
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where F is the region bounded above by the sphere z? + y* + 22 = 1 and below by the cone
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Q:6 (7 points) The slope of the tangent line to the polar curve r = 1 4 2cosf at the point
0=7is
3

Q:7 (7 points) The area of the region that lies inside both curves r = cos € and r = sin 6 is
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Q:8 (7 points) The area of the surface obtained by rotating the curve parametrized by
x=3t—1t3, y=3t2, 0<t<1about the z— axis is

%
Q:9 (7 points) The value of k for which the vectors A =< 1,4,-7 >, b =< 4,0,2 > and
7 =< k,0,1 > are coplanar is



Q:10 (7 points) Where does the line that passes through (1,0, 1) and (4, —2, 2) intersect the
planex +y+2 =67
(A) (7,—4,3)
(B) (1,2,3)
(€) (3,4,-1)
(D) (-1,4,3)

(E) (6,4, —4)

Q:11 (7 points) The equation x? — y* + 2% — 4o — 2y — 22 + 4 = 0 represents
(A) a cone
(B) a hyperboloid of two sheets
(C) a hyperboloid of one sheet
(D) an elliptic paraboloid

(E) a sphere



Q:12 (7 points) Consider the surface
222 + 3y + 3xyz =T.

Let 5z + By + Cz = D be an equation of the tangent plane to the given surface at (1,1,1).
The value of B+ C + D is

Q:13 (7 points) The maximum rate of change of f(z,y, z) = /22 + y? + 22 at the point (1,1, 1)
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Q:14 (7 points) Consider
1.2 3
ﬁ7 (z,y) # (0,0)
fla,y) =

L (z,y) =(0,0)

(A) f(z,y) has a removable discontinuity at (0, 0)
(B) lim(z4)—0,0) f(,y) does not exist.

(C) f(x,y) is continuous at (0,0)

(D) f(x,y) is continuous everywhere

(E) f(z,y) is continuous

Q:15 (7 points) If u = 2%y + y223, where 2 = rsel, y = rs?e~! and z = r2s sint, then the value
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