Name: ID #: Section #:

Q1) [2pts] Find an equation of the sphere with center (2, -3, 6) that touches the *xy*-plane

Q2) [4pts] Consider the vectors $\vec{a} = \langle 3, 6, -2 \rangle$ and $\vec{b} = \langle 1, 2, 3 \rangle$.

- (a) Find a vector that has the same direction as \vec{a} but has length 2.
- (b) Find the vector projection of \vec{b} onto \vec{a} .

Q3) [4pts] Find the area of the region that lies inside both curves $r = \sqrt{3}\cos\theta$ and $r = \sin\theta$.

Name:ID #:Section #:

Q1) [2pts] Find an equation of the sphere with center (2, -3, 6) that touches the *yz*-plane

Q2) [4pts] Consider the vectors $\vec{a} = \langle 3, 6, -2 \rangle$ and $\vec{b} = \langle 1, 2, 3 \rangle$.

- (a) Find a vector that has the same direction as \vec{b} but has length 3.
- (b) Find the scalar projection of \vec{b} onto \vec{a} .

Q3) [4pts] Find the area of the region that lies inside both curves $r = \sqrt{3} \sin \theta$ and $r = \cos \theta$.