Name:	ID #:	Section $#$:

Q1) **[2.5pts]** Sketch the parametric curve $x = t^2 - 2$, y = 5 - 2t, $-2 \le t \le 3$.

Q2) [2.5pts] If
$$x = t + \ln t$$
 and $y = t - \ln t$, find $\frac{d^2y}{dx^2}$.

Q3) Consider the curve C given by the polar equation $r = 2 - \cos(2\theta)$.

- (a) [3pts] Sketch the graph of the curve C.
- (b) [2pts] Find the slope of the tangent line to the curve C at $\theta = \pi/4$.

Name:	ID #:	Section $#$:

Q1) [2.5pts] Sketch the parametric curve $x = 1 + \sqrt{t}$, $y = t^2 - 4t$, $0 \le t \le 5$.

Q2) [2.5pts] If
$$x = t + \ln t$$
 and $y = t - \ln t$, find $\frac{d^2y}{dx^2}$.

Q3) Consider the curve C given by the polar equation $r = 2 + \cos(2\theta)$.

- (a) [3pts] Sketch the graph of the curve C.
- (b) [2pts] Find the slope of the tangent line to the curve C at $\theta = \pi/4$.