KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 132 - FINAL EXAM

Wednesday - May 22, 2013

Test Code: 1

Dr. Mohammad Z. Abu-Sbeih

TIME: 8:00 - 11:00 A.M.

Student Number:

Serial Number:

Name:

Important Notes

DO NOT USE CALCULATORS OF ANY TYPE

- 1. Write your serial number, student number, section number and name on both the answer sheet and question paper.
- 2. The test code is already typed and bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 3. When bubbling, make sure that the bubbled space is fully covered.
- 4. Check that the exam paper has 25 different questions.

(1) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 5x + 6}$ is equal to: (a) 0. (b) 4/5. (c) 4. (d) -4. (e) ∞ .

- (2) The slope of the tangent line to the curve $xy + 2x = 4y^2 + 2$ at the point (2, 1) is
 - (a) 1/2
 (b) -1/2.
 (c) 1/3.
 (d) -1/3.
 - (e) 3/7.

(3) If
$$y = \frac{\cos x}{1 + \sin x}$$
 then y' is:
(a) $\frac{1}{1 + \sin x}$.
(b) $\frac{-1}{1 + \sin x}$.
(c) $\frac{\cos x}{1 + \sin x}$.
(d) $\frac{\sin x}{(1 + \sin x)^2}$.
(e) $\frac{-\sin x}{(1 + \sin x)^2}$.

(4) Let $f(x) = \frac{x+3}{x^2+x-6}$, which of the following is **true**:

- (a) The graph has *x*-intercept at x = -3.
- (b) The graph has two vertical asymptotes.
- (c) The graph has no maximum but one local minimum.
- (d) The graph has only one vertical asymptote and only one horizontal asymptote.
- (e) The graph has one inflection point.

- (5) Which of the following is **false** about the graph of the function $f(x) = x^3 3x + 2$.
 - (a) The graph is decreasing on the interval (-1, 1).
 - (b) The graph has absolute minimum on the interval (-1, 1).
 - (c) The graph has local max. at the point (-1, 4) and local min. at the point (1, 0).
 - (d) The graph is concave down on $(-\infty,0)$ and concave up $(0,\infty)$.
 - (e) The graph has only one inflection point (0, 2).

(6) The value of the constant A which will make the function

$$f(x) = \begin{cases} 2x+1 & \text{if } x \ge 1 \\ A-x & \text{if } x < 1 \end{cases}$$

continuous is:

- (a) 2.
- (b) 3.
- (c) 4.
- (d) 5.
- (e) -3.
- (7) A manufacturer wants to design a rectangular box with square bottom, having a storage capacity of 1000 cubic ft. The least amount of metal needed to make the box is
 - (a) 600 ft^2
 - (b) 1200 ft^2
 - (c) 400 ft^2
 - (d) 800 ft^2
 - (e) 1000 ft^2
- (8) A company currently sells 850 radios monthly at a price of \$75 each. For each additional dollar the company charges, the public will buy 10 fewer radios monthly. What price should the company charge for each radios to maximum the monthly revenue?
 - (a) \$80.
 - (b) \$72.5.
 - (c) \$75.
 - (d) \$77.5.
 - (e) \$70.

(9) The area bounded by the graphs of x - y = 1 and $x + 1 = y^2$ is equal to:

(a) $\frac{1}{3}$. (b) $\frac{9}{2}$. (c) $\frac{4}{3}$. (d) $\frac{2}{3}$. (e) 1.

(10) The slope of the line tangent to the graph of $y = 2^{2x} + \ln \sqrt{x} + \pi^2$ when x = 1 is

(a) $\frac{1}{2} + 4 \ln 2$. (b) $4 \ln 2 + 2\pi$. (c) $\frac{1}{2} + 2 \ln 2$. (d) $\frac{1}{2} + 4 \ln 4$. (e) $\frac{1}{2} + 4 \ln 2 + 2\pi$.

(11) The profit P(x, y) from selling x computers and y printers is $P(x, y) = 8500 - 2x^2 + xy - y^2 + 49y$. The company will make:

(a) maximum profit when x = 14, and y = 14.

(b) minimum profit when x = 14, and y = 14.

- (c) maximum profit when x = 7, and y = 28.
- (d) minimum profit when x = 7, and y = 28.
- (e) maximum profit when x = 14, and y = 28.

(12) If $f(x, y) = \sin(x+y) + \ln x + \ln y$, then the number of points (x, y) for which $f_{xx} = f_{yy}$ is:

- (a) 0.
- (b) 1.
- (c) 2.
- (d) 4.
- (e) infinite.

(13) If $y = (1 + e^x)^x$ then f'(0) is equal to:

- (a) 0.
- (b) 1.
- (c) *e*.
- (d) $\ln 2$.
- (e) $1 + e^2$.

(14) The domain of the function $z = g(x, y) = \ln(4 - x^2 - y^2)$ is

- (a) the set of all points inside the circle $x^2 + y^2 = 4$
- (b) the set of all points outside the circle $x^2 + y^2 = 4$
- (c) the set of all points in the plane
- (d) the set of all points (*x*,*y*) satisfying $x^2 + y^2 \le 4$
- (e) the set of all points in space inside the cylinder $x^2 + y^2 = 4$
- (15) The function $f(x, y) = 2x^2 + y^2 xy 7y$ has
 - (a) only one relative maximum at (1,4).
 - (b) only one relative minimum at (1,4).
 - (c) one saddle point at (1,4).
 - (d) only one relative maximum at (4,1).
 - (e) One local maximum and one local minimum points

(16)
$$\int \frac{\sin x \, dx}{1 + \cos x} \text{ is equal to}$$

(a)
$$\frac{1}{(1 + \cos x)^2} + C$$

(b)
$$\frac{-1}{(1 + \cos x)^2} + C.$$

(c)
$$\cot x - \csc x + C$$

(d)
$$\ln |1 + \cos x| + C.$$

(e)
$$-\ln |1 + \cos x| + C.$$

(17) If
$$\int \frac{du}{\left[u^2 \pm a^2\right]^{\frac{3}{2}}} = \frac{\pm u}{a^2 \sqrt{u^2 \pm a^2}} + C$$
, then $\int_{1}^{2} \frac{dx}{(x^2 + 2x + 2)^{\frac{3}{2}}}$ is equal to:
(a) $\frac{\sqrt{3} + \sqrt{2}}{\sqrt{6}}$.
(b) $\frac{\sqrt{3} - \sqrt{2}}{\sqrt{6}}$.
(c) $\frac{3 + 2\sqrt{2}}{\sqrt{10}}$
(d) $\frac{3 - 2\sqrt{2}}{\sqrt{10}}$
(e) $\frac{3\sqrt{5} - 2\sqrt{2}}{\sqrt{10}}$

(18) $\int 4x \ln \sqrt{x} \, dx$ is equal to

(a)
$$x^{2} (\ln x - \frac{1}{2}) + C$$

(b) $x^{2} (\ln x + \frac{1}{2}) + C$.
(c) $x^{2} (\ln x - \frac{1}{4}) + C$
(d) $x^{2} (\ln x - 1) + C$.
(e) $2x^{2} (\ln x - \frac{1}{2}) + C$.
(19) $\int \left[\frac{1}{(1-x)^{2}} + \frac{1}{x-1} \right] dx$ is equal to
(a) $\ln |1-x^{2}| + \ln |x-1| + C$.
(b) $\frac{1}{x-1} + \ln |x-1| + C$.
(c) $\frac{1}{1-x} + \ln |x-1| + C$.
(d) $-\ln |x-1| + C$.
(e) $3\ln |x-1| + C$.

(20) The area bounded by the two graphs $f(x) = x^3 - 1$ and g(x) = x - 1 is equal to:

(a) $\frac{1}{4}$. (b) $\frac{1}{12}$. (c) 1 (d) 2. (e) $\frac{1}{2}$. (21) $\int x e^{x-1} dx$ is equal to: (a) $e^{x-1}(x+1) + C$ (b) $xe^{x-1} + C$

- (c) $e^{x-1}(x-1)+C$
- (d) $xe^{x-1}-1+C$
- (e) $e^x + C$

(22)
$$\int_{0}^{\frac{\pi}{4}} 2^{\tan x} \sec^{2} x \, dx \quad \text{is equal to:}$$

(a) $\frac{1}{\ln 2}$.
(b) 1
(c) $-\ln 2$.
(d) $\ln 2$.
(e) $\frac{2}{\ln 2}$.

(23) The average cost equation of a certain product is $\overline{C} = 2x^2 - 5x + \frac{5000}{x}$, where x is the number of units produced. The marginal cost when 20 units are produced is

- (a) 2000.
 (b) 2200.
 (c) 2400.
- (d) 4200.
- (e) 4000.

(24) The volume of the sphere of radius r is given by $V = \frac{4}{3}\pi r^3$. Using differentials to approximate the amount of paint needed to paint a sphere of *diameter* 4 cm with a layer of thickness 0.05 cm, we get:

- (a) $32\pi \ cm^3$.
- (b) $3.2\pi \ cm^3$.
- (c) 9.6 π cm³.
- (d) $1.6\pi \ cm^3$.
- (e) $0.8\pi \ cm^3$.

(25) The plane 2x - y + 3z = 6 intersects the x-axis, y-axis, and z-axis at a, b, and c respectively. The value of a+b+c=

- (a) 0
- (b) 1
- (c) -1
- (d) 2
- (e) 4