King Fahd University of Petroleum and Minerals		Serial #: St. Number:	
Department of Mathematical Sciences		Name:	
Instructor: M. Z. Abu-Sbeih	Math - 132.6	Test No. II	Date: 21-4-2013.

Note: Show all your work. No credits for answers not supported by work.

Problem 1: (25 points) Consider the function $y = f(x) = 3x - x^3$

a. Find the critical numbers.

- b. Find intervals where the function is increasing and those where it is decreasing.
- c. Find the local maximum and minimum of the function.
- d. Discuss the concavity of the function and find the infection points.
- e. Sketch the graph of the function. Clearly indicate the critical numbers, extrema and inflection points.

Problem 2: (10 points) Find all vertical and horizontal asymptotes of $y = \frac{x}{1-x}$.

Problem 3: (10 points) The demand equation for a certain product is $p = \frac{80-q}{4}$; $0 \le q \le 80$, where q is

the number of units and p is the price per unit. At what value of q will there be a maximum *revenue* r? What is this maximum revenue?

Problem 4: (10 points) Suppose that the profit (in reyal) of producing q units of a certain prodict is $p = 300q - 3q^2 - 400$. Using differentials, find the approximate change in profit if the level of production changes from q = 90 to q = 91.

Problem 5: (10 points) Find the area enclosed by the graphs of $y = 2 - x^2$ and y = x.

Problem 6: (35 points) Evaluate the integrals:

(a)
$$\int_{0}^{1} \sqrt{x} (x+2) dx$$

(b)
$$\int \frac{e^{x} + e^{2x}}{e^{x}} dx$$

(c)
$$\int \frac{x+1}{x^{2} + 2x + 4} dx$$

(d)
$$D_{x} (\int_{1}^{3} \sqrt{x^{3} + x} dx)$$

(e)
$$\int \frac{d}{dx} \left(\frac{2^{x}}{\sqrt{x^{4} + 3}} \right) dx$$