King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 690 - Midterm Exam 1 (121)

Time: 2 H 20 min

======================================	======================================	
	Problem 1	/5
	Problem 2	/5
	Problem 3	/5
	Problem 4	/10
	Problem 5	/10
	 Total	/35

Problem # 1. (5 marks) Given two sequences $(u_n) \subset L^p(\Omega)$ and $(v_n) \subset L^{p'}(\Omega)$, where p > 1 with 1/p + 1/p' = 1 and Ω is a domain of \mathbb{R}^N . If $u_n \to u$ in $L^p(\Omega)$ and $v_n \to v$ in $L^{p'}(\Omega)$ show that $\int u_n v_n \to \int uv$ **Problem # 2.** (5 marks) Let u(x) = |x| - 1 and $v(x) = \frac{u(x)}{2+u(x)}$, -1 < x < 1. Show that $v \in W_0^{1,p}((-1,1)), \forall p \ge 1$. **Problem # 3.** (5 marks) Let I = (-1, 1). We define on $W_0^{1,1}(I)$, the linear functional F by $\langle F, v \rangle = v(0)$.

a. Show that F is well defined and bounded.

b. Find f_0, f_1 in $L^{\infty}(I)$ which satisfy

$$v(0) = \int_{-1}^{1} (f_0 v + f_1 v'), \ \forall v \in W_0^{1,1}(I).$$

Problem # 4. (10 marks) Let I = (0, 1) and

$$V = \left\{ v \in H^1(I) \ / \ v(1) = 0 \right\}$$

- a. Show that V is closed in $H^1(I)$ b. Show that $||v||_{L^2} \leq ||v'||_{L^2}$ c. If $f \in L^2(I)$ show that

(P₁)
$$\begin{cases} -u'' = f & \text{in } I \\ u'(0) = 0, & u(1) = 0 \end{cases}$$

has a unique solution $u\in V\cap H^2(\Omega)$

Problem # 5. (10 marks) Given the problem

(P₂)
$$\begin{cases} -u'' + v = f & \text{in } I = (0, 1) \\ -v'' + v - u = g & \text{in } I \\ u(0) = 0, & u(1) = 0 \\ v'(0) = 0, & v'(1) = 0 \end{cases}$$

a. Show that, for $f, g \in L^2(I)$, problem (P_2) has a unique weak solution (u, v) in an appropriate space to be determined.

b. Show that if f = g then $u - v \in H^4(I)$