Department of Mathematics and Statistics

Math 653 – Advanced Topics in Commutative Algebra (Term 121)

Exam 1 (Duration = 6 hours)

(Part 1 - 70/100)

Solve 5 problems (out of 7) from the below list.

(1) Let P = (p) be a principal prime ideal of a ring R and J = $\bigcirc P^n$. Prove the following:

(a) Q is a prime ideal of R strictly contained in $P \Rightarrow Q \subset J$.

- (b) $p \notin Z(R) \Longrightarrow J = pJ$.
- (c) $p \notin Z(R) \Longrightarrow J \in Spec(R)$.
- (d) R is an integral domain and J is finitely generated \Rightarrow J = 0 and ht(P) = 1.
- (e) J is finitely generated \Rightarrow ht(P) \leq 1.

(2) Let R be a ring and $u \in U(R)$. Prove that $R[u] \cap R[u^{-1}]$ is integral over R.

(3) (The homogeneous Nullstellensatz) Let K be a field and $R = K[x_1, ..., x_n]$. An ideal I of R is homogeneous if : $f \in I \Rightarrow$ all the homogenous constituents of $f \in I$. A variety V ($\subseteq K^n$) is a cone if : $(a_1, ..., a_n) \in V \Rightarrow (ta_1, ..., ta_n) \in V$ for all $t \in K$.

- (a) Prove that if I is homogeneous, then V(I) is a cone; where V(I) denotes the variety consisting of all points of K^n where all polynomials in I vanish.
- (b) Prove that if V is a cone and K is infinite, then J(V) is homogeneous; where J(V) denotes the ideal of polynomials vanishing on V.
- (c) Prove that if K is algebraically closed, then the radical of a homogeneous ideal is homogeneous.

(4) Let R be an integral domain with quotient field K. Prove the following:

- (a) $S^{-1}R$ integral over $R \Rightarrow R = S^{-1}R$ (for any given multiplicative subset S of R).
- (b) Every ring between R and K is integrally closed \Rightarrow R is Prüfer.
- (c) Every ring between R and K is a localization \Rightarrow R is Prüfer.

(5) Let R be an integral domain, K its quotient field, and R' its integral closure. Let T be a ring between R and K, and D the conductor of T relative to R, i.e., $D = (R :_R T)$. Prove:

- (a) R is Noetherian and $D \neq 0 \Rightarrow T$ is a finitely generated R-module
- (b) $D \not\subset P \in \text{Spec}(R)$ and $Q \in \text{Spec}(T)$ with $Q \cap R = P \Rightarrow R_P = T_Q$.
- (c) T is a finitely generated R-module and $P \in \text{Spec}(R)$ with $R_P = T_P \Longrightarrow D \not\subset P$.
- (d) If R' is a f.g. R-module and $P \in \text{Spec}(R)$, then: R_P is integrally closed \Leftrightarrow $(R :_R R') \not\subset P$.

(6) Let R be an integral domain with quotient field K. Suppose that every ring between R and K is Noetherian. Prove that the Krull dimension of R is at most 1. (This is the converse of Theorem 93.)

(7) Let an integral domain $R = \bigcap R_i$ be a locally finite intersection of one-dimensional local domains lying between R and its quotient field. For each i, let M_i denote the maximal ideal of R_i and let $P_i = M_i \cap R$.

- (a) Prove that any non-zero element of R lies in only a finite number of minimal prime ideals of R.
- (b) Assume $ht(P_i) = 1$ for each i. Prove that for any $0 \neq a \in R$, we have

 $Z(R/(a)) = P_1 \cup ... \cup P_n$

where $P_1,\,...,\,P_n\,$ are the minimal prime ideals containing a.

(c) Prove that every prime ideal of grade 1 has height 1.

(Part 2 - 30/100)

Solve the following problem.

Let D be an integral domain with quotient field K and E a subset of K.

- Let Int(E, D) = {f ∈ K[X] | f(E) ⊆ D} called the ring of D-integer-valued polynomials over E. If E = D, we write Int(D) instead of Int(D, D).
- The polynomial closure of E in D is the largest subset F of K with Int(E, D) = Int(F, D)and is given by $cl_D(E) = \{x \in K \mid f(x) \in D \text{ for each } f \in Int(E, D)\}.$
- E is said to be D-fractional if $\exists 0 \neq d \in D$ such that $dE \subseteq D$. So $dX \in Int(E, D)$.
- E is polynomially dense in D if Int(E, D) = Int(D). (e.g., N is polynomially dense in Z.)

Assume that for some $\Delta \subseteq$ Spec(D), D = $\bigcap_{p \in \Delta} D_p$ is a locally finite representation of D. Then prove the following:

- (a) $Int(E, D)_p = Int(E, D_p)$, for each $p \in \Delta$.
- (b) $cl_D(E) = \bigcap_{p \in \Delta} cl_{Dp}(E_p)$.
- (c) If $E \subseteq D$, then: E is polynomially dense in $D \Leftrightarrow E$ is polynomially dense in $D_p \forall p \in \Delta$.