KFUPM - Department of Mathematics and Statistics Final Exam MATH 552, Fields and Galois Theory, Term 121 Duration: 180 minutes

NAME:

ID:

Solve the following Exercises.

Exercise 1(15 points). Let $K|_F$ be an extension of fields. Prove that K is algebraic over F if and only if every intermediate ring between F and K is a field.

Exercise 2 (20 points). Let $K|_F$ be a quadratic extension of fields and suppose that F is of characteristic 2.

(1) Prove that K is separable over F if and only if there is $\theta \in K \setminus F$ and $\alpha \in F$ such that $\theta^2 + \theta + \alpha = 0$. (2) Prove that $K = F(\theta)$ and $K|_F$ is Galois. (3) Prove that $X^2 + X + \alpha = (X + \theta)(X + \theta + 1)$ and it is the minimal

polynomial of θ over F.

Exercise 3(20 points).

(1) Prove that for any root θ of the polynomial $X^4 - 2$ of $\mathbb{Q}[X]$, $\mathbb{Q}(\theta)$

(2) Find three extensions $\mathbb{K}_1 \subsetneq \mathbb{K}_2 \subsetneq \mathbb{K}_3$ such that \mathbb{K}_2 is normal over $\mathbb{K}_1, \mathbb{K}_1$ is normal over \mathbb{Q} but \mathbb{K}_2 is not normal over \mathbb{Q} . (3) \mathbb{K}_3 normal over \mathbb{Q} .

Exercise 4(25 points). Recall that if \mathbb{E} is a subset of the complex field \mathbb{C} containing 0 and 1 and $\hat{\mathbb{E}}$ is the set of all element $z \in \mathbb{C}$ constructible (from \mathbb{E}) with ruler and compass, then \mathbb{E} is the smallest subfield of \mathbb{C} containing \mathbb{E} and satisfying:

(i) if $z^2 \in \hat{\mathbb{E}}$, then $z \in \hat{\mathbb{E}}$, (ii) if $z \in \hat{\mathbb{E}}$, then $\bar{z} \in \hat{\mathbb{E}}$.

(1) Prove that an angle θ is constructible (from \mathbb{E}) if and only if $\cos\theta$ is constructible.

(2) Find a necessary and sufficient condition so that the angle θ is constructible from the angle 3θ .

(3) Is the angle $\theta = 10$ constructible from the angle 30?

Exercise 5(20 points). Let $f(X) = X^3 - 3X + 1 \in \mathbb{Q}[X]$, and let K be the splitting field of f(X) over \mathbb{Q} .

- (1) Prove that f(X) is solvable by radicals.
- (2) Prove that K is not a radical extension of \mathbb{Q} .

Exercise 6(20 points) Let F be a field containing a primitive *nth* root of unity and K a finite extension of F. Prove that $K|_F$ is an *n*-Kummer extension if and only if $K = F(\sqrt[n]{a_1}, \ldots, \sqrt[n]{a_r})$ for some $a_i \in F$.

6

Exercise 7(30 points). Let F be a field, N an algebraic closure of F and $a \in N$ separable over F. Let K be the normal closure of F(a) over F, p a prime positive integer, H_1, \ldots, H_s the p-Sylow subgroups of $Gal(K|_F)$, H the subgroup of $Gal(K|_F)$ generated by $\bigcup_{i=1}^{i=s} H_i$, $M_i = \mathcal{F}(Hi)$ (the fixed field of Hi) and $M = \mathcal{F}(H)$. (1) Prove that $M = \bigcap_{i=1}^{i=s} M_i$ and that M is Galois over F. (2) Prove that if p divides [K:F], then there exists $j \in \{1,\ldots,s\}$ such that $a \notin M_j$. (3) Let L be an intermediate field of $N|_F$. (i) Prove that if $L(a)|_L$ is Galois, then $(K \cap L)(a)|_{K \cap L}$ is Galois and $Gal(K|_L)$ is isomorphic to a subgroup of $Gal((K \cap L)(a)|_{K \cap L})$. (4) Prove that p divides [K:F] if and only if there is an intermediate field L of $N|_F$ such that $L(a)|_L$ is Galois of degree p.