KFUPM - Department of Mathematics and Statistics MATH 552, Term 121 Exam I (Out of 100)

NAME: ID:

Solve the following Exercises.

Exercise 1 (10 points 3-3-4): Let K = F(a) be a finite extension of F. For $\alpha \in K$, define $\phi_{\alpha} : K \to K$ by $\phi_{\alpha}(x) = x\alpha$.

(1) Prove that ϕ_{α} is an *F*-linear transformation.

(2) Prove that $det(xI - \phi_a)$ is the minimal polynomial of a, where I is the identity F-transformation.

(3) For which $\alpha \in K$ is $det(xI - \phi_{\alpha})$ the minimal polynomial of α over F.

Exercise 2 (10 points): Let $K|_F$ be a field extension. Prove that K is algebraic over F if and only if every monic polynomial of K[X] is a divisor of some non-zero polynomial in F[X].

 $\mathbf{2}$

Exercise 3 (10 points 3-4-3): Let *a* be an odd integer. (1) Prove that $X^3 + 4X - a^2$ is irreducible in $\mathbb{Q}[X]$. (2) Let \mathbb{E} be a splitting field of $X^4 - aX - 1$, θ a root of $X^4 - aX - 1$ in \mathbb{E} and $K = \mathbb{Q}(\theta)$. Prove that for every α , β in \mathbb{E} , if $X^2 + \alpha + \beta$ divides $X^4 - aX - 1$, then the minimal polynomial $P_{\alpha^2,\mathbb{Q}}$ of α^2 over \mathbb{Q} is $X^3 + 4X - a^2$. (3) Find $[K : \mathbb{Q}]$.

Exercise 4 (10 points 3-3-4): Let F be a field of positive characteristic p, K = F(X, Y) and $L = F(X^p, Y^p)$.

- (1) Find [K:L].
- (2) Prove that $u^p \in L$ for every $u \in K$.
- (3) Prove that the extension $K|_L$ has infinitely many intermediate fields.

Exercise 5 (10 points): Let K be a field and $\sigma \in Aut(K)$ has infinite order. Let F be the fixed field of σ . Prove that if K is algebraic over F, then K is a normal extension of F.

Exercise 6 (10 points 5-5): Let K and L be two normal extensions of a field F and suppose that K and L are subfields of a common field \mathbb{E} .

- (1) Prove that $K \cap L$ is a normal extension of F.
- (2) Prove that $F(K \cup L)$ is a normal extension of F.

Exercise 7 (10 points 3-4-3):

(1) Prove that for any root θ of the polynomial $X^4 - 2$ of $\mathbb{Q}[X]$, $\mathbb{Q}(\theta)$ is not a normal extension of \mathbb{Q} .

(2) Find three extensions $\mathbb{K}_1 \subsetneqq \mathbb{K}_2 \subsetneqq \mathbb{K}_3$ such that \mathbb{K}_2 is normal over \mathbb{K}_1 , \mathbb{K}_1 is normal over \mathbb{Q} but \mathbb{K}_2 is not normal over \mathbb{Q} . (3) \mathbb{K}_3 normal over \mathbb{Q} .

Exercise 8 (10 points 3-4-3): Let $K|_F$ be an extension of fields of characteristic $p \neq 0$ and set $L = \{x \in K | x^{p^r} \in F \text{ for some integer } r \geq 0\}$. (1) Prove that L is an intermediate field (i. e., $F \subseteq L \subseteq K$.

- (2) Prove that if K is perfect, then L is perfect.
- (3) Prove that every F-automorphism of K is an L-automorphism.

Exercise 9 (10 points): Let $F \subseteq L \subseteq K$ be extension of fields such that $K|_L$ is normal and $L|_F$ is purely inseparable. Prove that $K|_F$ is normal.

Exercise 10 (10 points 3-4-3): Let F be a field of characteristic $p \neq 0$, n a positive integer and $a \in F$. (1) Prove that X^{p^n} has only one irreducible divisor f in F[X]. (2) Prove that there exists a positive integer $m \le n$ such that $X^{p^n} - a = f^{p^m}$. (3) Prove that there exists $b \in F$ such that $f = X^{p^{n-m}} - b$.