King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH533 - Complex Variables HomeWork 2 – Semester I, 2012-2013

Exercise 1

Find all entire functions f such that

$$|f(z)| \le \frac{|z|^4}{\ln|z|}$$
 for $|z| > 1$.

Exercise 2

Prove that for any polynomial p(z)

$$\frac{1}{2i\pi}\int_{\partial B(c)}\overline{p(z)}\,dz=\overline{p'(c)}$$

where $B(c) = \{z \in \mathbb{C} : |z - c| < 1\}, c \in \mathbb{C}.$

Exercise 3

Let $\gamma : [0, 2\pi] \to \mathbb{C}$ be $\gamma(t) = r e^{it}$ and let $g : |\gamma| \to \mathbb{C}$ be continuous. Show that

$$\overline{\int_{\gamma} g(w) \, dw} = -\int_{\gamma} \overline{g(w)} \, \left(\frac{r^2}{w^2}\right) \, dw.$$

Exercise 4

Let *f* be analytic on the closure of the disc $\Delta_r = \{z \in \mathbb{C} : |z| < r\}$. Define

$$g(z) = \frac{1}{2\pi i} \int_{\partial \Delta_r} \frac{\overline{f(w)}}{w-z} dw, \quad |z| \neq r.$$

1. Show that

$$\overline{g(z)} = \frac{1}{2\pi i} \int_{\partial \Delta_r} \left(\frac{f(w)}{\overline{w} - \overline{z}} \right) \frac{r^2}{w^2} dw$$

- 2. Find g(z) for |z| > r and prove that $g(z) = \overline{f(0)}$ for |z| < r.
- 3. Deduce that

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Delta_r} \frac{\Re f(w)}{w} \frac{(w+z)}{w-z} dw + i\Im f(0), \text{ for } |z| < r.$$
$$f + \bar{f}$$

(Hint:
$$\Re f = \frac{f+\bar{f}}{2}$$
)

Exercise 5

Suppose that *f* is an entire function such that f(0) = 1, f'(0) = 0 and $f''(1 + \frac{1}{n}) = 7 - \frac{3}{n}$ for all *n* natural number. Find *f* that satisfies these properties.

Exercise 6

Let *f* be analytic in some region containing the closed unit disc $\overline{\Delta} = \{z \in \mathbb{C} : |z| \le 1\}$ and suppose that $|f(z)| \le M$ for all $z \in \Delta$.

1. If $f(a_k) = 0$ for $1 \le k \le n$, show that

$$|f(z)| \le M \prod_{k=1}^n \left| \frac{z - a_k}{1 - \bar{a_k} z} \right|.$$

2. If $f(a_k) = 0$ for $1 \le k \le n$, each $a_k \ne 0$ and $|f(0)| = M|a_1 \dots a_n|$, find a formula for f.

Exercise 7

Suppose that both f and g are analytic on $\overline{\Delta_r} = \{z \in \mathbb{C} : |z| \le r\}$, with |f(z)| = |g(z)| for |z| = r. Show that if neither f nor g vanishes in Δ_r , then there is a constant λ , $|\lambda| = 1$, such that $f = \lambda g$.