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Problem 1. Expand
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Problem 2. For ¢ € (0, 77) and n € IN, show that
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Problem 3. Compute the integral / dx.

Problem 4. (Generalized Argument Principle)

(1) Let f be meromorphic on a neighborhood of the closed unit disk ID(0,1), and
that f has neither poles nor zeros on dID(0,1). Let g analytic on a neighborhood of
the closed unit disk ID(0, 1).

Prove that
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where ny,ny,...,n, are the multiplicities of the zeros z1,z,...,z, of f in ID(0,1)
and my,my, ..., m, are the multiplicities of the poles wy, wy, ..., w, of finID(0,1)

(2) Application: Suppose f is analytic in ID(0,2) and
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Find the zeros of f in the unit disk ID.
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Problem 5. Show that the polynomial z° + 15z + 1 has all its roots in the disk
ID(0, 2) but only one of these roots lies in the disk ID(0,3/2).

Problem 6.

(1) Find all entire functions f such that |f(z)]
(2) Find all entire functions f such that |f(z)|
if sin z is replaced by cosz ?

e“forallz =x+iy € C.

<
< |sinz| for all z € C, how about

Problem 7. Let f be analytic in |z| < 1 with f(0) =0and |f(z)| < 1.

Prove that
F(z) = f(2) + f(Z) + f(2°) +... = ) f(z")

n>1

is analytic in |z| < 1, and that

F(z)] < é Iz <7< 1.

Bonus Problem (Parseval-Gutzmer formula)

Let f be an analytic function on ID(0, 7), the closed disk of radius r, with Taylor
series
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Deduce that -
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where M, = sup{|f(z)| : |z| = r}.



