Q1. Let P be the matrix $\frac{aa^{T}}{a^{T}a}$ where a is a vector. a) Show that $P^{2} = P$.

- b) Is P invertible? Why?c) Show that the trace of P always equals one.

Q2. Let W be a subspace of R^3 spanned by the set $S = \{x_1, x_2, x_3\}$, where

- $x_1^T = \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} \end{bmatrix}, x_2^T = \begin{bmatrix} \sqrt{2} & 1 & \sqrt{2} \end{bmatrix}, x_3^T = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & 0 \end{bmatrix}$ a) Use Gram-Schmidt to find an orthonormal basis for W.

 - b) Find the QR-factorization of the matrix $A = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ c) Use part (b) to solve the system Ax=b where $b^T = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}$

Q3. A small company has been in business for three years and has recorded annual profits (in thousands of dollars) as follows

Year	1	2	3
Sales	7	4	3

Assuming that there is a linear trend in the declining profits, predict the year and the month in which the company begins to lose money.

Q4. Find the next Legendre Polynomial – a cubic orthogonal to 1, x, and $x^2 - \frac{1}{3}$ over the interval [-1, 1].

Q5. Find the pivots (without using the elimination) of the matrix

2	1	2
A=[4	5	0].
2	7	0

Q6. If $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$ find A^{100} by diagonalizing A.

Q7. (a) Let A be a symmetric matrix. Show that all eigenvalues of A are real. (b) Let $v \in C^n$. Show that if $v^*v = 1$, then $I - 2vv^*$ is hermitian and unitary.

Q8. Suppose T is a 3 x 3 upper triangular matrix with entries t_{ij} . Compare the entries of TT^H and T^HT , and show that if they are equal then T must be diagonal.

- Q9. Find a unitary U and a triangular T so that $U^{-1}AU = T$, for A= $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. 1 0 0

Q10. Find the Jordan form J and the matrix M for A= $\begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. What is the solution to $\frac{du}{dt} = Au$ and what is e^{At} ?

Q11. Label each of the following statements as True or False.

- (a) If the vectors x and y are orthogonal and P is a projection matrix, then Px and Py are also orthogonal.
- (b) If all eigenvalues of a real matrix are equal to 1 then the matrix must be orthogonal.
- (c) The sum of two unitary matrices must be unitary
- (d) If N is a unitary matrix, then there exists a unitary matrix U such that $U^{-1}NU$ is a diagonal matrix
- (e) If N is normal, then $||Nx|| = ||N^Hx||$ for every vector x.