MATH 460 / Test 1/ 121 Name:	KFUPM/ Department of Mathematics and Statistics	ID#
	MATH 460 / Test 1/ 121	Name:

1. [8 pts] Factor A= $\begin{bmatrix} 2 & 3 & 3 \\ 0 & 5 & 7 \\ 6 & 9 & 8 \end{bmatrix}$ into the decomposition LU, and use it to solve the system Ax=b, where $b = \begin{bmatrix} 2 & 2 & 5 \end{bmatrix}^T$.

2. [6pts] Consider the system

x+by =0

x- 2y - z=0 y+z=0

Which number b leads to a row exchange? Which b leads to a missing pivot? In that singular case, find a nonzero solution x, y, z.

- 3. [10 pts] Given that A is invertible and A = L₁D₁U₁ and A=L₂D₂U₂.
 (a) Derive the equation L₁⁻¹L₂D₂ = D₁U₁U₂⁻¹ and explain why one side is lower triangular and the other side is upper triangular.
 - (b) Compare the main diagonals in that equation, and then compare the off diagonals.
 - (c) Prove that $L_1 = L_2$, $D_1 = D_2$ and $U_1 = U_2$.
 - (d) Use (c) to show that if A is symmetric, then the factorization becomes $A = LDL^{T}$.

- 4. [10 pts] For the system Ax=b where $A = \begin{bmatrix} 1 & 2 & 0 & 1 & b_1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$ and $b=[b_2]$ 1 2 0 1 b_3
 - (a) Reduce [A b] to [U c}, to reach the echelon matrix U.
 - (b) Find the condition on b_1 , b_2 and b_3 to have a solution.
 - (c) Describe the column space of A.
 - (d) Describe the null space of A.
 - (e) Find a particular solution when b=(-6, 6, -6) and the complete solution $x_p + x_n$.

5. [4 pts] If A is a 64 by 17 matrix of rank 11, how many independent vectors satisfy Ax=0? How many independent vectors satisfy $A^T y = 0$?

6. [6 pts] Find a basis for the row space and a basis for the left null space of the matrix

7. [6 pts] Compute all possible right inverses of the matrix $A = \begin{bmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \end{bmatrix}$. Do we have left inverses for A.

8. [5 pts] Let L be a transformation from R^2 to R^2 such that it is the composition of the following: A reflection in the line through O at 60 degrees to the positive x-axis, followed by counterclockwise rotation through 30 degrees, followed by projection onto the x-axis. Find the matrix A in the standard basis of R^2 .

9. [5 pts] Suppose $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Find a nonzero matrix M such that T(M)=AM is zero. Can we find a matrix M such that T(M)=I where I is the identity matrix. Find the null space of T.