King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 425 Final Exam Fall 2012(121)

ID#:_____ NAME:__

Total Score(out of 105)#_____ Time allowed: 150 minuts NO CREDITS WILL BE GIVEN FOR ANSWER WITHOUT EXPLANATION.

PART ONE: (35 POINTS)

(1) Consider the graph $G = K_{2,3,2}$. Answer each of the following. If your answer is no, explain why; and if yes, support it by construction or calculation.

- 1. Is G Eulerian graph?
- 2. Is G Hamiltonian graph?
- 3. Is G planar graph?
- 4. Find the number of cut vertices and bridges of G.
- 5. Find the crossing number cr(G).

(2) Consider the complete graph $G = K_4$.

- 1. Find the number of spanning trees of G.
- 2. Let $A = (a_{ij})$ be the adjacency matrix of G. what is the graph theoretical meaning of:

(a) the entry
$$a_{23}^{(2)}$$
 in A^2 .
(b) $\frac{1}{3} \sum_i a_{ij}^{(3)}$.

(3)

- 1. Prove that if G is a graph of order $n \ge 3$ and size $m \ge (\frac{n-1}{2}) + 2$, then G is Hamiltonian.
- 2. The following two graphs are isomorphic. Why?

PART TWO: (70 POINTS) (SOLVE ONLY TWO PROBLEMS FROM QUES-TIONS 1,2,3,4 AND ALL 5,6 & 7.)

- 1. (a) Show that the extremal number $ex(n; C_n) = (\binom{n-1}{2} + 1.$
 - (b) Prove that if G is maximal outerplanar, then G has n-2 interior regions, where n is the order of G.
- 2. (a) Define the Moore bound M(r, g).
 - (b) Show that if G is an (r, g)-graph of order n, then $n \ge M(r, g)$.
- 3. (a) Find n(3,5), the smallest order of an (3,5)-graph.
 - (b) Show that the Peterson graph is the unique 5-cage.
- 4. (a) Let G be a connected planar graph with $n \ge 3$ vertices, m edges and girth g = 5. Show that $q \le \frac{5}{3}(n-2)$.
 - (b) Use (a) to show that the Peterson graph is non-planar.
- 5. (a) State Kuratowski's Theorem and Wagner's Theorem.
 - (b) Use either Kuratowski's Theorem or Wagner's Theorem to prove that the following graph is nonplanar.

- 6. (a) Define (i) a vertex transitive graph. (ii) Similar vertices.
 - (b) State Frucht's Theorem.
 - (c) Show that every *n*-cycle is a Cayley graph.
 - (d) How many distinct labeling (from a fixed set of labels) are there for (i) C_n $(n \ge 3)$. (ii) P_n $(n \ge 2)$. (iii) $K_{1,n}$ $(n \ge 2)$
- (a) Define (i) A flow in a network N. (ii) A cut in a network N. (iii) A tournament. (iv) a strongly connected digraph.
 - (b) State (i) the Max-Flow Min-Cut Theorem. (ii) Robbins' Theorem.
 - (c) Prove that a tournament contains a vertex from which every other vertex can be reached by a directed path of length at most 2.
 - (d) Prove or disprove: If every vertex of a tournament T belongs to a cycle in T, then T is strong.

Dr. M. R. Alfuraidan