King Fahd Univ. of Petroleum and Minerals Faculty of Sciences Department of Mathematics and Statistics

FINAL EXAM MATH. 411-121

Name:

ID:

<u>Prob. 1</u>

Let *m* be a positive integer, $f(x) = e^x$ and $Y = I_1 \cup I_2 \cup ... \cup I_m$ where $I_k = [(k-1)/m, k/m] \times [0, f(k/m)], k = 1, ..., m$. Find the area $V_2(Y)$. Show that it is approximately e - 1 if *m* is large.

<u>Prob. 2</u>

Show that if A is measurable and B is a null set, then $V(A \cup B) = V(A \setminus B) = V(A)$.

<u>Prob. 3</u>

Let [a] denote the largest integer which is not greater than a. Let $\Phi(x, y) = [x + y]$ if $0 \le x < r$, $0 \le y < s$ where r and s are positive integers. For all other (x, y) let $\Phi(x, y) = 0$. Show that

$$\int \Phi dV_2 = \frac{rs(r+s-1)}{2}.$$

<u>Prob. 4</u>

Show that f is integrable over A (a) $f(x) = \sin \frac{1}{x}$ if $x \neq 0$, f(0) = 5, A = [-1, 1](b) $f(x, y) = \frac{x^4 - y^2}{x^2 - y}$, $A = \{(x, y) : |x| \le 1, |y| \le 1, x^2 \ne y\}$ **Prob. 5** Find the volume of $\{(x, y, z) : |x| + |y| + |z| \le 2, z^2 \le y\}$. **Prob.** 6

Let $f_n(x) = n/(x^2+n^2)$, n = 1, 2, ... Show that $0 \le f_n(x) \le 1$, $\lim_{n \to \infty} f_n(x) = 0$, for all x and $\int f_n dx = \pi$. Why does this not contradict the DCT? **Prob. 7**

Let $f_1, f_2, ...$ be functions on R which satisfy the hypotheses of Lebesgue's dominated convergence theorem. Let $F_n(x) = \int_0^x f_n(t)dt$, $F(x) = \int_0^x f(t)dt$. Show that F_n tends to F uniformly on R as $n \to \infty$.

<u>Prob. 8</u>

For $x \in R$, let $\Phi(x) = \int_0^\infty e^{-t^2} \cos(xt) dt$. Show that $\Phi'(x) = -\frac{1}{2}x\Phi(x)$ and find $\Phi(x)$.

<u>Prob. 9</u>

Let $\Phi(t) = \int_0^1 \log(2 - x^2 t^2) dx$. Show that $\Phi'(0) = 0$ and that Φ is concave on (-1, 1).

<u>Prob. 10</u>

Let $f(x) = x^{-1}(\log x)^{-2}$, $A = (0, \frac{1}{2})$. Show that $f \in L^p(A)$ for p = 1 but not for p > 1.