King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 302 Exam 2 Semester (121) November 21, 2012 Time: 08:00 - 10:00 pm

Name:

I.D:Section:

No calculators allowed. For all steps show calculations. Each question carries 20 marks.

Problem	Points
1	
2	
3	
4	
5	
Total	

Exercise 1. Let $\varphi(x, y) = xy^3$ and \mathcal{C} be the curve given parametrically by: $x = 2\cos t$, $y = 2\sin t$ with $0 \le t \le \pi$

$$x = 2\cos t, \ y = 2\sin t \text{ with } 0 \le t \le \frac{1}{2}.$$

Evaluate the line integral

$$I = \int_{\mathcal{C}} \varphi ds$$

of φ along \mathcal{C} with respect to arc length.

Exercise 2. Let \mathcal{C} be the positively oriented simple closed path given by

$$\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3,$$

where

- C_1 is the portion of the graph of $y = x^3$ joining the points (0,0) and (1,1),
- C_2 is the portion of the graph of $y = x^2$ joining the points (1, 1) and $(\frac{1}{2}, \frac{1}{4})$,
- C_3 is the line segment joining $(\frac{1}{2}, \frac{1}{4})$ and (0, 0).

Verify Green's Theorem for the vector field $\vec{F}(x,y) = 4y\hat{i} + 7x\hat{j}$ over the path C.

Exercise 3. Use Stokes theorem to evaluate $\oint_{\mathcal{C}} \bar{F}.d\vec{r}$, where $\vec{F}(x, y, z) = -y^2\hat{i} + x\hat{j} + z^2\hat{k}$ and the curve \mathcal{C} is the trace of the cylinder $x^2 + y^2 = 4$ in the plane x + y + z = 3. Assume that \mathcal{C} is oriented counter clock-wise as viewed from above.

Exercise 4. Evaluate the surface integral $\int \int_{\mathcal{S}} G(x, y, z) dS$, where $G(x, y, z) = (x^2 + y^2 + z^2)^2$ and S is the portion of the cone $z = 4\sqrt{x^2 + y^2}$, $y \ge 0$ and $0 \le z \le 4$.

Exercise 5. Consider the vector field $\vec{F}(x,y) = 2xy^3\hat{i} + (1+3x^2y^2)\hat{j}$ show that • \vec{F} is conservative

- Find a potential $\phi(x, y)$ whose gradient is the vector field \vec{F} .
- Evaluate the integral $I = \int_{(1,4)}^{(3,1)} 2xy^3 dx + (1+3x^2y^2) dy.$