King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 2 The First Semester of 2012-2013 (121)

Time Allowed: 120 Minutes

Name:	ID#:	
Instructor:	Sec #: Serial #:	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		12
2		16
3		16
4		12
5		14
6		16
7		14
Total		100

Q:1 (12 points) Let $\overrightarrow{F} = x^3\hat{i} + y^3\hat{j} + z^3\hat{k}$ be a vector field and S the surface of the region bounded by the hemisphere $z = \sqrt{4 - x^2 - y^2}$ and the plane z = 0. Use divergence theorem to evaluate $\int \int_S (\overrightarrow{F} \cdot \hat{n}) dS$.

$\mathbf{Q:2}$ (4+6+6 points) Find the following:

(a)
$$\mathcal{L}\{e^{-t}\cosh t\},\$$

(b) $\mathcal{L}^{-1}\left\{\frac{s-1}{s^2+2s}\right\},\$
(c) $\mathcal{L}^{-1}\left\{\frac{s+1}{(s-1)(s^2+1)}\right\}.\$

 $\mathbf{Q:3}$ (4+5+7 points) Find the following:

(a)
$$\mathcal{L} \{ te^{-t} \cos t \},$$

(b) $\mathcal{L} \{ f(t) \},$ where $f(t) = \begin{cases} t, & 0 \le t < 1 \\ 2, & t \ge 1 \end{cases}$.
(c) $\mathcal{L}^{-1} \{ \frac{s^2}{(s^2+1)^2} \}.$

Q:4 (12 points) Solve the initial value problem using Laplace transform $y'' - y' - 2y = \delta(t - \pi)$ with y(0) = 1, y'(0) = 1.

Q:5 (14 points) Show that the set of functions $\left\{\frac{\sqrt{2}}{2}, \cos\frac{n\pi}{2}x\right\}$, $n = 1, 2, 3, \cdots$ is orthogonal on [0, 2]. Also find norm of each function.

Q:6 (16 points) Find the Fourier series of the function $f(x) = \begin{cases} 1-x & -1 < x < 0 \\ 1 & 0 \le x < 1 \end{cases}$.

Q:7 (8+6 points) (a) Find the half-range Fourier cosine expansion of $f(x) = \sin 2x$, $0 \le x < \frac{\pi}{4}$.

(b) Show that
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}$$
.