King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 301 Major Exam 1 The First Semester of 2011-2012 (121)

Time Allowed: 120 Minutes

Name:	ID#:	
Instructor:	Sec #: Serial #:	

- Mobiles and calculators are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		14
2		12
3		14
4		16
5		12
6		16
7		16
Total		100

- **Q:1** (7+7 points) Given the position vector $\vec{r}(t) = 2\sqrt{2}t \hat{i} + e^{2t}\hat{j} + e^{-2t}\hat{k}$ of a curve C:
- (a) Find a unit tangent vector to the curve at t = 0.
- (b) Find the length of the curve for $0 \le t \le 1$.

- **Q:2** (6+6 points) Let $f(x, y, z) = xy^2 + 2x^2y + z^2$.
- (a) Find the directional derivative of f(x, y, z) at (-1, 1, 2) in the direction of $\hat{i} \hat{j} + 3\hat{k}$.
- (b) Find the direction and value of maximum directional derivative of f(x, y, z) at (1, 0, 1).

(b) (6 points) Evaluate the line integral $\int_C x^2 dx + (x+z) dy + y^2 dz$, where the path C is given by x = t, $y = t^2$, z = -t, $0 \le t \le 1$.

Q:4 (16 points) Determine if the vector field

$$\vec{F}(x,y) = (e^x \sin y - y \sin(xy)) \hat{i} + (e^x \cos y - x \sin(xy)) \hat{j}$$

is a conservative field. If so, find a potential function $\phi(x, y)$ for \vec{F} and evaluate the integral $\int_C \vec{F} \cdot d\vec{r}$, where C is any path from $(1, \frac{\pi}{2})$ to $(2, \pi)$.

Q:5 (12 points) Use Green's theorem to evaluate the line integral $\oint_C 3e^{-x^2}dx + 2\ln(1+x^2)dy$, where C is the positively oriented triangle with vertices (0,0), (0,1) and (1,1). **Q:6** (16 points) Evaluate the surface integral $\int \int_S y^2 z dS$, where S that portion of the cone

 $z = \sqrt{x^2 + y^2}$ that lies between the planes z = 1 and z = 2.

Q:7 (16 points) Use Stokes' theorem to evaluate the integral $\oint_C \vec{F} \cdot d\vec{r}$, where

 $\vec{F}(x,y,z) = 2yz \ \hat{i} + xy \ \hat{j} + xy \ \hat{k}$ and C is the intersection of the plane x + y + z = 2 with

the coordinate planes in the first octant oriented positively.