MATH 301.2 (Term 121)

Quiz 2 (Sects. 9.12, 9.13) Duration: 20mn

Name:

ID number:

1.)(5pts)Use Green's theorem to evaluate the line integral $\oint_{\mathcal{C}} \sqrt{x^2 + y^2} dx + \sqrt{x^2 + y^2} dy$ along the closed path \mathcal{C} given by y = 0, $x^2 + y^2 = 1$, $y \leq 0$.

2.)(5pts) Find the surface area of the sphere $x^2 + y^2 + z^2 = 16$ that lies within the cylinder $x^2 + y^2 = 4y$.

1)
$$Fdr = \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

$$= \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

$$= \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) - \frac{\partial Q}{\partial y}$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right)$$

$$= \left(\frac{\partial Q}{\partial y} - \frac{\partial Q}{\partial y}\right) dO\left(\frac{\partial Q}{\partial y}\right) dO\left($$