KFUPM	Semester 121
Dept. Math. &Stat.	A.Y:2012/2013
Name:	
ID:	•••••

Exercise 1

Which of the following functions are one-one, onto, or bijective? Justify your answer.

- 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$.
- 2. $g: \mathbb{N} \to \mathbb{N}, \ g(n) = n+1.$
- 3. $h: \mathbb{N} \to \mathbb{N}^+$, h(n) = n + 1.
- 4. $r: \mathbb{R} \to \{0\}, \ r(x) = 0.$

Test N°3 Math 232 (December 13, 2012)

Exercise 2

Let S be a set. For each subset $A \subseteq S$ define a function $\chi_A \colon S \to \{0, 1\}$, called the **characteristic function** of A, as follows:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

For example, if $S = \{1, 2, 3, 4\}$ and $A = \{1, 2, 4\}$, then $\chi_A(1) = \chi_A(2) = \chi_A(4) = 1$ and $\chi_A(3) = 0$.

- (a) Give the formulas for the characteristic functions χ_{\emptyset} and χ_{S} .
- (b) Let A' denote the complement of A in S. Compare the formulas for χ_A and $\chi_{A'}$.
- (c) Show that if A and B are subsets of S then

$$A = B \iff \chi_A = \chi_B$$

(The proof will involve the careful consideration of set equality, which appears in the left-hand statement, and function equality, which appears in the right-hand statement.)

(d) Show that if A and B are subsets of S then

$$\chi_{A \cap B}(x) = \chi_A(x) \cdot \chi_B(x) \quad \forall x \in S$$

 $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_A(x)\chi_B(x) \quad \forall x \in S$

Test N°3 Math 232 (December 13, 2012)

Exercise 3

Let a and b be real numbers. Consider a function $f: \mathbb{R} \to \mathbb{R}$ given by the formula f(x) = ax + b.

- (a) Under what conditions on a and b is f a bijection from \mathbb{R} to \mathbb{R} ? (For instance, what if a=0?)
- (b) Under what conditions on a and b is the restriction $f|_{\mathbb{Z}}$ a bijection from \mathbb{Z} to \mathbb{Z} ?
- (c) Under what conditions on a and b is the restriction $f|_{\mathbb{N}}$ a bijection from \mathbb{N} to \mathbb{N} ?

Test $N^{\circ}3$ Math 232 (December 13, 2012)

Exercise 4

Suppose $f: \mathbb{N} \to A$ and $g: \mathbb{N} \to B$ are surjections. Prove that there is a surjection $h: \mathbb{N} \to A \cup B$. Suggestion: Consider $f(1), g(1), f(2), g(2), \ldots$

Test $N^{\circ}3$ Math 232 (December 13, 2012)

Exercise 5

Suppose $f: A \to B$ and $g: B \to C$ are functions.

- (a) Show that if $g \circ f$ is injective then f is injective.
- (b) Show that if $g \circ f$ is surjective then g is surjective.

Test N°3 Math 232 (December 13, 2012)

Exercise 6

In each part of this exercise, give examples of sets A, B, C and functions $f: A \to B$ and $g: B \to C$ satisfying the indicated properties.

- (a) g is not injective but $g \circ f$ is injective.
- (b) f is not surjective but $g \circ f$ is surjective.

(Suggestions: Work with sets having at most three elements; draw pictures.)

Test $N^{\circ}3$ Math 232 (December 13, 2012)

Exercise 7

Let $f: A \to B$. Prove that, if f is one-to-one, then $f(X) \cap f(Y) = f(X \cap Y)$ for all $X, Y \subseteq A$. Is the converse true? Explain.