KFUPM	Semester 121
Dept. Math. &Stat.	A.Y:2012/2013
Name:	
ID:	

Exercise 1

Label each statement true or false.

- (a) $\{1, 2, 3\} = \{3, 1, 2\}$
- (b) $\{1, 2, 3\} = \{2, 1, 3, 3, 2\}$
- (c) $\{5,\emptyset\} = \{5\}$
- (d) $\{5\} \in \{2, 5\}$
- (e) $\emptyset \in \{1, 2\}$

Exercise 2

Give sets A and B such that the statements $A \in B$ and $A \subseteq B$ are both true.

Exercise 3

Let $A = \{1, 2, \pi\}$, and let P be the statement " $x \in A$ and $x \in \mathbb{Z}$." Determine the truth value of each of the following implications, and justify briefly. Take the set \mathbb{R} of real numbers as the universal set.

- (a) $(\exists x)P \Longrightarrow (\forall x)P$
- (b) $(\forall x)P \Longrightarrow (\exists x)P$

Exercise 4

Suppose $A_1 = \{a, b, d, e, g, f\}$, $A_2 = \{a, b, c, d\}$, $A_3 = \{b, d, a\}$ and $A_4 = \{a, b, h\}$ (a) $\bigcup_{i=1}^4 A_i =$ (b) $\bigcap_{i=1}^4 A_i =$

(a)
$$\bigcup_{i=1}^4 A_i =$$

(b)
$$\bigcap_{i=1}^4 A_i =$$

Exercise 5

For each $n \in \mathbb{N}$, let $A_n = \{0, 1, 2, 3, \dots, n\}$.

(a)
$$\bigcup_{i\in\mathbb{N}}A_i=$$

(b)
$$\bigcap_{i\in\mathbb{N}}A_i =$$

Exercise 6

Is $\bigcap_{\alpha \in I} A_{\alpha} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$ always true for any collection of sets A_{α} with index set I?

Exercise 7

If $\bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} A_{\alpha}$, what do you think can be said about the relationships between the sets A_{α} ?

Exercise 8

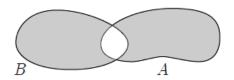
Prove or give a counterexample for each of the following statements.

- (1) Let *A* and *B* be sets. Then $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.
- (2) Let *A* and *B* be sets. Then $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Exercise 9

Let A and B be sets. Define the symmetric difference to be

$$A \oplus B = (A - B) \cup (B - A)$$



The set $A \oplus B$ consists of those elements of $A \cup B$ that belong to exactly one of the sets A, B. Prove the following statements. (Assume only that A and B are sets. Do not assume that we know what their elements are.)

- (a) $A \oplus A = \emptyset$
- (b) $A \oplus \emptyset = A$
- (c) $(A \oplus B) (A B) = B A$
- (d) $A \oplus B = \emptyset \Longrightarrow A = B$ (Therefore, combining parts (a) and (d) gives the equivalence $A \oplus B = \emptyset \Longleftrightarrow A = B$.)
- (e) $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ (Start with a Venn diagram.)

Test N°2 Math 232 (November 22, 2012)				

Exercise 10

Determine each of the following sets.

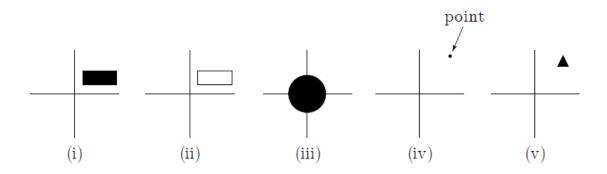
- (a) $P(\{2\})$
- (b) $P(P(\{2\}))$
- (c) $P(P(P({2})))$

Exercise 11

- (a) Show that if A and B are sets then $\emptyset \notin P(A) P(B)$.
- (b) Deduce from part (a) that the difference of two power sets can never be a power set.
- (c) Prove that $P(A B) \subseteq (P(A) P(B)) \cup \{\emptyset\}$.

Exercise 12

- (a) Exhibit a subset S of $\{1, 2, 3\} \times \{1, 2, 3\}$ for which there are no subsets A and B of $\{1, 2, 3\}$ such that $A \times B = S$.
- (b) Which of the following pictures represent(s) a set that has the form $A \times B$ for some $A, B \subseteq \mathbb{R}$?



Exercise 13

List all the partitions of the set $\{1, 2, 3, 4, 5\}$ that have no one-element blocks.

Test N° 2 Math 232 (November 22, 2012)

Exercise 14

Let $S = \{1, 2, 3\}$. In each case give an example of a relation R on S that has the stated properties.

- (a) R is not symmetric, not reflexive, and not transitive.
- (b) R is transitive and reflexive, but not symmetric.

Test N° 2 Math 232 (November 22, 2012)

Exercise 15

Prove for every integer $n \geq 1$:

$$1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$