KFUPM Semester 121

Dept. Math. &Stat.

A.Y:2012/2013

Test N°1 Math 232

(October 01, 2012)

Name:
ID:
<i>1D</i>

(I)

A statement is a declarative sentence

Decide whether or not the following are statements. In the case of a statement, say if it is true or false, if possible.

- Every real number is an even integer.
- If *x* and *y* are real numbers and 5x = 5y, then x = y.
- \blacksquare The integer *x* is a multiple of 7.
- \blacksquare Either *x* is a multiple of 7, or it is not.
- In the beginning, God created the heaven and the earth.

(II)

Without changing their meanings, convert each of the following sentences into a sentence having the form "If P, then Q."

- A matrix is invertible provided that its determinant is not zero.
- Whenever people agree with me I feel I must be wrong. (Oscar Wilde)

(III)

Without changing their meanings, convert each of the following sentences into a sentence having the form "P if and only if Q."

- For matrix A to be invertible, it is necessary and sufficient that $det(A) \neq 0$.
- If xy = 0 then x = 0 or y = 0, and conversely.

For an occurrence to become an adventure, it is necessary and sufficient for one to recount it. (Jean-Paul Sartre)

(IV)

Write a truth table for four among the following nine statements:

1.
$$P \lor (Q \Rightarrow R)$$

4.
$$\sim (P \vee Q) \vee (\sim P)$$
 7. $(P \wedge \sim P) \Rightarrow Q$

7.
$$(P \land \sim P) \Rightarrow Q$$

2.
$$(Q \lor R) \Leftrightarrow (R \land Q)$$
 5. $(P \land \sim P) \lor Q$ **8.** $P \lor (Q \land \sim R)$

5.
$$(P \land \sim P) \lor Q$$

8.
$$P \vee (Q \wedge \sim R)$$

$$\mathbf{3} \sim (P \rightarrow Q)$$

3.
$$\sim (P \Rightarrow Q)$$
 6. $(P \land \sim P) \land Q$ **9.** $\sim (\sim P \lor \sim Q)$

9.
$$\sim (\sim P \lor \sim Q)$$

(V)

Suppose the statement $((P \land Q) \lor R) \Rightarrow (R \lor S)$ is false. Find the truth values of P,Q,R and S. (This can be done without a truth table.)

(VI)

Suppose *P* is false and that the statement $(R \Rightarrow S) \Leftrightarrow (P \land Q)$ is true. Find the truth values of R and S. (This can be done without a truth table.)

(VII)

Decide whether or not the following pairs of statements are logically equivalent.

$$P \wedge Q$$
 and $\sim (\sim P \vee \sim Q)$

$$\sim (P \Rightarrow Q)$$
 and $P \land \sim Q$

$$(P \Rightarrow Q) \lor R \text{ and } \sim ((P \land \sim Q) \land \sim R)$$

$$P \lor (Q \land R)$$
 and $(P \lor Q) \land R$

(VIII)

Using "proof by contradiction", show that:

If $a, b \in \mathbb{Z}$ and $a \ge 2$, then $a \nmid b$ or $a \nmid (b+1)$.