Show all your work. No credits for answers not supported by work.

Rectangular: (17 Points) Use triple integral to find the volume of the solid bounded above by the parabolic cylinder $z = 4 - y^2$ and below by the elliptic paraboloid $z = x^2 + 3y^2$. SKETCH THE REGION.

Cylindrical: (18 Points) Use triple integral to find the volume of the solid bounded above by the plane z = y and below by the paraboloid $z = x^2 + y^2$. SKETCH THE REGION.

Intersection:
$$y = x^2 + y^2$$
; $r \sin \theta = r^2$
 $r = \sin \theta$.

IT $\sin \theta$ $r \sin \theta$
 $r = \sin \theta$.

 $r = \sin \theta$.

 $r = \sin \theta$.

 $r = \sin \theta$.

Spherical: (25 Points) Use triple integral to find the volume of the solid bounded above by the cone $z^2 = x^2 + y^2$, below by the xy-plane, and on the side by the hemisphere $z = \sqrt{4 - x^2 - y^2}$. SKETCH THE REGION.

