1. The sum of all values of k for which y = k is a horizontal asymptote to the graph of the function

$$f(x) = 2 + \left(\frac{8x^4 + x^2 - 1}{27x^4 + 8}\right)^{1/3}$$
 is

- (a) $\frac{8}{3}$
- (b) 2
- (c) $\frac{62}{27}$
- (d) $\frac{5}{2}$
- (e) 0

- 2. Evaluate $\lim_{x \to 0} \frac{\sin 3x 3x x^2}{1 \cos 2x}.$
 - (a) $-\frac{1}{2}$
 - (b) $\frac{2}{3}$
 - (c) -2
 - (d) $-\frac{2}{3}$
 - (e) Does not exist

- 3. If the radius of a circle is increased from 3 m to 3.06 m, then the estimated percentage change in the area of the circle is
 - (a) 4%
 - (b) 6%
 - (c) 9%
 - (d) 2%
 - (e) 0.36%

- 4. Using the midpoint rule and 3 rectangles of equal base, the estimated area under the curve $y = \sin(\pi x)$ between x = 0 and x = 1 is equal to
 - (a) $\frac{2}{3}$
 - (b) $\frac{1}{3}(1+\sqrt{3})$
 - (c) $\frac{1}{\sqrt{3}}$
 - (d) $\frac{2}{\pi}$
 - (e) 1

- $5. \qquad \int \left(4\sin 2x \frac{9}{e^{3x}}\right) dx =$
 - (a) $-2\cos 2x + \frac{3}{e^{3x}} + C$
 - (b) $-8\cos 2x \frac{27}{e^{3x}} + C$
 - (c) $-2\cos 2x + \frac{27}{e^{3x}} + C$
 - (d) $-8\cos 2x + \frac{3}{e^{3x}} + C$
 - (e) $2\cos 2x \frac{3}{e^{3x}} + C$

- 6. Newton's method is used to estimate the x-coordinate of the point of intersection of the curves $y = x^3 + 3x$ and y = 4x + 1. If we start with $x_0 = 1$, then $x_1 =$
 - (a) 1.5
 - (b) 1.05
 - (c) 1.005
 - (d) 1.4
 - (e) 1.75

- 7. $\frac{d}{dx}\left[\csc^2(e^x) \cot^2(e^x)\right] =$
 - $(a) \quad 0$
 - (b) e^x
 - (c) $3e^x \cot(e^x) \cdot \csc^2(e^x)$
 - (d) $-2e^x$
 - (e) $-e^x \csc(e^x) \cdot \cot(e^x)$

- 8. If the length x of an edge of a cube decreases at the rate of $0.05\,cm/min$, then the surface area of the cube when $x=5\,cm$ is decreasing at the rate of
 - (a) $3 cm^2/min$
 - (b) $6 cm^2/min$
 - (c) $0.6 \, cm^2 / min$
 - (d) $2 cm^2/min$
 - (e) $0.2 \, cm^2 / min$

- 9. If $y'' = \frac{3}{\sqrt{x}}$, y'(4) = 8 and y(1) = 0, then y(16) =
 - (a) 192
 - (b) 132
 - (c) 64
 - (d) 100
 - (e) 36

- 10. The sum of two nonnegative numbers $p \cap 27$. If p is the product of one of the numbers and the square root of the other, then the largest possible value of p is
 - (a) 54
 - (b) 64
 - (c) 48
 - (d) 44
 - (e) 36

- 11. The function $f(x) = 5x^3 3x^5$ has
 - (a) 2 local extrema and 3 points of inflection
 - (b) 2 local extrema and 2 points of inflection
 - (c) 2 critical points and 3 points of inflection
 - (d) 3 critical points and no points of inflection
 - (e) 2 local extrema and one point of inflection

- 12. If $f'(x) = \frac{x^2(x-1)}{x+2}$, then which one of the following statement is **TRUE**?
 - (a) f has one local minimum and no local maxima
 - (b) f has one local minimum and one local maximum
 - (c) f is increasing on (-2,1)
 - (d) f is decreasing on $(1, \infty)$
 - (e) f has one local maximum and no local minima

- If c is a number which satisfies the conclusion of the Mean 13. Value Theorem for the function $f(x) = \sin^{-1}\left(\frac{x}{2}\right)$ on the interval [0, 2], then $\pi^2 c^2 + 16 =$
 - (a) $4\pi^2$
 - (b) 0
 - (c) π^2
 - (d) $2\pi^2$
 - (e) 4

- Let f be a differentiable function such that 1 < f'(x) < 314. for all values of x, then which one of the following statement is TRUE?
 - (a) 2 < f(7) f(5) < 6(b) 3 < f(7) f(5) < 6

 - (c) 2 < f(7) f(5) < 3
 - (d) 1 < f(7) f(5) < 3
 - (e) 5 < f(7) f(5) < 7

15. The sum of the absolute maximum and the absolute minimum values of the function

$$f(x) = 2\cos x + 2\cos^2 x, \quad \frac{\pi}{2} \le x \le 2\pi$$

is

- (a) $\frac{7}{2}$
- (b) $\frac{5}{2}$
- $(c) \quad 0$
- (d) -1
- (e) 1

- 16. Given that $f(x) = \frac{x^2 + 1}{\sqrt{2x + 1}}$, then the number of critical points of f is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 0
 - (e) 4

- 17. The linearization of $f(x) = x^x$ at x = 1 is given by
 - (a) L(x) = x
 - (b) L(x) = x + 1
 - (c) L(x) = 2x 1
 - (d) L(x) = -x + 2
 - (e) $L(x) = x^x$

- 18. If $f(x) = \log_2(8x^{\ln 2})$ then $f'(\frac{1}{2}) =$
 - (a) 2
 - (b) ln 2
 - (c) $-\ln 2$
 - (d) -2
 - (e) 8

- 19. Evaluate $\lim_{x \to -\infty} \frac{-3x+1}{\sqrt{4x^2+6x+1}}$.
 - (a) $\frac{3}{2}$
 - (b) $\frac{-3}{2}$
 - (c) ∞
 - (d) $-\infty$
 - (e) $\frac{-3}{4}$

20. The equation of the tangent line to the curve $y^{\sin x} = \tan x$ at the point $\left(\frac{\pi}{4}, 1\right)$, is

(a)
$$y - 1 = 2\sqrt{2}\left(x - \frac{\pi}{4}\right)$$

(b)
$$y - 1 = \frac{1}{\sqrt{2}} \left(x - \frac{\pi}{4} \right)$$

(c)
$$y - 1 = -\sqrt{2}\left(x - \frac{\pi}{4}\right)$$

(d)
$$y-1 = \frac{1}{2\sqrt{2}} \left(x - \frac{\pi}{4}\right)$$

(e)
$$y-1 = -\frac{1}{2\sqrt{2}} \left(x - \frac{\pi}{4}\right)$$

- 21. If $f(x) = \frac{x + |x|}{|x|}$, then which one of the following statements is **TRUE**?
 - (a) $\lim_{x\to 0^-} f'(x) = 0$
 - (b) $\lim_{x \to \infty} f'(x) = 1$
 - (c) $\lim_{x \to -\infty} f'(x) = 1$
 - (d) $\lim_{x \to 0^+} f'(x) = \infty$
 - (e) $\lim_{x \to 0} f'(x) = \pm 1$

- 22. Which one of the following functions has a graph with a vertical tangent at x = 0?
 - (a) $f(x) = x x^{1/3}$
 - (b) $f(x) = x x^{-1/3}$
 - (c) $f(x) = \frac{1}{|x|}$
 - (d) $f(x) = x x^{4/3}$
 - (e) $f(x) = \frac{x^2}{x^4 x^2}$

- 23. If $x^4 + y^4 = 16$, then y'' =
 - (a) $\frac{-48x^2}{y^7}$
 - (b) $\frac{3x^3}{y^2}$
 - (c) $4x^3 + 4$
 - (d) $12(x^2 + y^2)$
 - (e) $\frac{y^3}{4x^3}$

24. Which one of the following statements is **FALSE** about the graph of the function

$$f(x) = -x - \frac{1}{x-1}$$
?

- (a) The graph of f has exactly one inflection point
- (b) The graph of f is concave downward on $(1, \infty)$
- (c) The graph of f is concave upward on $(-\infty,1)$
- (d) The line y = -x is an oblique asymptote of the graph of f
- (e) The line x=1 is a vertical asymptote to the graph of f

- 25. The height of a right circular cone of largest volume that can be inscribed in a sphere of radius 1 is [Hint: The volume of a cone = $\frac{1}{3} \times (\text{area of base}) \times \text{height}$]
 - (a) $\frac{4}{3}$
 - (b) $\frac{3}{2}$
 - (c) $\frac{5}{3}$
 - (d) $\frac{5}{4}$
 - (e) $\frac{7}{4}$

- 26. $\sum_{k=3}^{100} (2 4k + k^2)$ is equivalent to
 - (a) $\sum_{n=1}^{98} (-2 + n^2)$
 - (b) $\sum_{n=1}^{102} (-2 + 2n + n^2)$
 - (c) $\sum_{n=1}^{98} (-4 + n^2)$
 - (d) $\sum_{n=1}^{102} (-2 + 4n + n^2)$
 - (e) $\sum_{n=1}^{98} (-6 + n^2)$

27. Which one of the following statements is **TRUE** about the continuity of the function?

$$f(x) = \begin{cases} \frac{x^3 - 1}{x^2 + 3x - 4}, & x \neq 1, -4\\ 4, & x = 1\\ 5, & x = -4 \end{cases}$$

- (a) f has a removable discontinuity at x = 1
- (b) f has a jump discontinuity at x = 1
- (c) f has an infinite discontinuity at x = 1
- (d) f is continuous at x = -4
- (e) f has a removable discontinuity at x = -4

- 28. Evaluate $\lim_{x \to \infty} (1 + 4x)^{3/\ln x}$.
 - (a) e^3
 - (b) e^{12}
 - (c) $e^{3/4}$
 - (d) 1
 - (e) Does not exist.