KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICAL SCIENCES DHAHRAN, SAUDI ARABIA

STAT 319: PROBABILITY & STATISTICS FOR ENGINEERS & SCIENTISTS

Final Exam, Term 112 Time: 7.00- 9.30 p.m., Monday May 21, 2012

Please check/circle the name of your instructor; Write clearly your name, ID, and section number.

Instructors:

🗆 Anabost 🗆 Muttlak				
Student Surname:	Anabosi	ID#	Section #	

You are allowed to use electronic calculators and other reasonable writing accessories that help write the exam. Try to define events, formulate problem and solve. See example below. Example Q:

(3pts) Find the Area of a rectangle with perimeter of 30 units and length of 8 units.

Exerciple Answer with grading point scheme.

Perimeter =2(1 + w) = $30 \rightarrow 1 + w = 15$	(1 pt)
Length = $1 = 8 \rightarrow w = 15 - 1 = 7$	(1pt) -
\Rightarrow Area = 1*w = 8*7 = 56 unit ² .	(1 pt)

Do not keep your mobile with you during the exam, turn off your mobile and leave it aside.

Γ	Question No	Full Marks	Marks Obtained
<i>ि</i> ।	1	10	
10	2	16	
101	3	7	
in t	4	10	
17	5	12	
8	6]1	
26	7	19	
- [Total	85	
ł			

Note: You may assume $\alpha = 0.05$ for testing if not otherwise stated.

Q1. (2+3+2+3=10)

 $\mathbf{1}$

The thickness (X), in microns, of a sample of metal wires produced in a chip manufacturing process are given in the flowing table:

b. Determine standard deviation of the thickness of the metal wires.

$$S = \sqrt{\frac{2}{2} \frac{2}{2} \frac{1}{2} \frac{(5x, 4)^{2}}{n}} = \sqrt{\frac{2721 - (275)^{2}}{33}} \rightarrow (2)$$

$$= \sqrt{\frac{6.7353}{33}} = \sqrt{0.2041} = (0.4518) \text{ micror}$$

c. Calculate coefficient of Variation and explain it.

$$\overline{z} = \frac{\sum x_i f_i}{n} = \frac{275}{34} = \boxed{8.0882} \text{ microns} \rightarrow (i)$$

$$C.V. = \frac{S}{\overline{z}} = \frac{0.4518}{8.0882} = \boxed{0.0559} \approx 5.59\% (j)$$

d. What is percentage of metal wires with a thickness of at most 8 microns?

$$Fercentage = \frac{19}{39} = (55.8824\%) \to (1)$$

Ş

Q2. (4x4=16). Answer the following problems:

.0

Së

a. Extensive experience with fans of a certain type used in diesel engines has suggested that the exponential distribution provides a good model for time until failure. Suppose the mean time until failure is 3 years. What is the probability that the lifetime of a fan exceeds 3 years?

X: Fan lifetime until failure. X: Exp(2)
$$\rightarrow$$
 ()
 $\lambda = \frac{1}{\mu} = \frac{1}{3} = 0.3232$ failure /year. \rightarrow ()
 $f(x) = \lambda e^{2\chi} = \frac{1}{3}e^{2\chi}, 2>0 \longrightarrow$ ()
 $P(X>2) = e^{2\chi} = e^{-1} = 0.3679 \longrightarrow$ ()

3

b. An assembly line is out of control with 20% of the items produced being independently defective, what is the probability that two successive items are defective?

- c. A purchaser of electrical components here them in lets of size 10. It les policy to increact 3 components randomly from a lot to accept the lot only if all 3 are non-defective. If there are two defective items in each lot, what proportion of lots does the purchaser reject?
- Y: # of defective components out of $3 \Rightarrow Y: HG(N, n, a) \rightarrow 0$ N=10, n=3, a=2 P(Accept) = P(Y=0) = $\binom{2}{6}\binom{2}{3} = \frac{56}{120} = 0.4667 \rightarrow 0$ P(Reject) = I P(Accept) = $\binom{2}{3}\binom{2}{3} = \frac{120}{120}$ d. The thickness of certain electronic components is normally distributed with the mean of 10
- mm and standard deviation 1mm. Find the median for the thickness of these electronic components.

(i)

$$X: Thickness \Rightarrow X: N(10,1)$$

$$Median = Mean - Mode = 10 m$$

$$Fil (X < K) = 0.5 - 0$$

$$= P_r (Z < K - 10) = 0.5 - 0$$

$$Taship P_r (Z < 0) = 0.5 - 0$$

$$Se = K - 10 = 0 \Rightarrow K = 10$$

$$Fil = 0 \Rightarrow K = 10$$

Q3. (7)+1+2=10)

.

The following sample data were obtained for the curing time, in hours, of an experimental adhesive,

31.5 28.7 42.5 39.3 29.8 31.0 36.3 33.4 35.5 37.2

a. Construct a 98% confidence interval for the mean curing time of the adhesive.

$$N = 10, \quad \overline{x} = (34.52) \text{ M} S = (4.4317) \text{ hr } (2)$$
Assumptions: (1) Small cample (2) Assume normal population.
(3) CT is Unknown =D Use t-distribution

$$1-\alpha = 0.98 = D \quad d = 0.02 = 0.01 \Rightarrow (1001/9 = 2.92) (1)$$
A 98% c.T. for μ is $\overline{z} \pm 4x_{5} \text{ Vr}$

$$(2) = [34.52 \pm (2.821) \frac{4/3}{17}] = [24.52 \pm 3.9534] = [30.5447, 38.47347]$$
b. Interpret the interval obtained in (a).
We are 98% confidence interval to test the claim that the true (population)
mean Quring time of the adhesive is between \rightarrow (1)
30.53 hs and 38.47 hcs.
c. Use this confidence level.
(3) $H_{c}: \mu = 35$ as.
(4) $H_{c}: \mu = 35$ as.
(5) $DR: If \mu_{0} \in C.T. \Rightarrow Can NoT reject H_{0}.$
(4) Decisive. Cince $\mu_{0} = 35 \in C.T. \Rightarrow Dwe can
NoT reject H.
(5) Conclusion. The datase provide sufficient
evidence to Conclude that the
mean Curing time is 25 hre.$

٠

.4

Records indicate that of all vehicles undergoing emissions testing during the previous year. 70% passed on the first try. A random sample of 200 cars tested in a particular county during the current year yields 160 that passed on the first try.

a. Does this suggest that the true proportion for this county during the current year is larger than the previous proportion? Report your p-value.

n = 200, x = 160 = 1 $p = \frac{x}{n} = \frac{160}{200} = (0.8)$ P = 0.7Assumptions: since Np = 200(0.8) = 160 % 5 m md Nq = 200(0.2) = 40% 5 m Huenwe are use the normal approximation to the binomial. P~N(P, PQ)=040; P=0.7 vs. 41: P>0.7 $\begin{array}{c} \textcircled{O} TS : Z_{6} = \underbrace{p - P_{0}}_{VP_{0}Q_{0}} = \underbrace{(8 - 0.7)}_{Ve_{1}Z_{0}} = \underbrace{0.1}_{0.0324} = \underbrace{3.086}_{0.0324} + \underbrace{3.086}_{0.0324} + \underbrace{3.086}_{0.001} + \underbrace{3.$ (a) Since p-value = $0.001 \le 0.05 = 10$ (b) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.05 = 10$ (c) $Reject H = 0.001 \le 0.001 \le 0.05$ (c) $Reject H = 0.001 \le 0.0$

95% confidence level.

Fifteen specimens of a new computer chip were tested for speed in a certain application, along with 15 specimens of chips with the old design. The average speed, in MHz, for the new chips was 495.6, and the standard deviation was 19.4. The average speed for the old chips was 481.2, and the standard deviation was 14.3.

6

a. Can you conclude that the mean speed for the new chips is greater than that of the old chips? State the appropriate null and alternate hypotheses, test statistics decision and final recommendation.

1) O Ho: My=to s. H: My > Mo 1	New old
Decempting of Indep. samples.	N 15 15
(2) Arampions to Small :	x .495-6 48).2
Assume normal	5 19.4 14.3
populations.	
d. Unknown J'S.	$S_{p} = \sqrt{(n_{N}-1)S_{N} + (b^{-1})S_{0}}$
e. Equal o's.	$n_{\rm N} + n_0 - 2$
R) Test staticities	$\sqrt{14(19.4)^{2}+14(14.5)^{2}}$
$\frac{1}{(7 - 2n)} = \delta^{2}$	$=\sqrt{-28}$
$t_o = \frac{c_N - c_O}{1 + c_O}$	- (200/1217-0419)
sp V ny + no	- V210.425 -
(495.6 - 481.2) = 0	A Decision (1)
117-0419) 1= + 15	$G = \frac{1}{2} \frac{1}{3} $
- (2 341)	Pinet H.
(1) 0 (1)	=> Kgee
$(4) \underbrace{Critical Value}_{t = 10} (1.701)$	7) Conclusion: Yes, we can
(1) = D LOIDS, 28 - (1) = D - cision Puls: Efforta we reji)	Conclude that New chips are
b. What assumptions you have made for part(a)?	faster than the Old ones.
() First: We have to assume se	amples are Endependent.
D Second: : : : : po	pulations are Normal.
Third: = = = = T's	are Equal -

15 06. (#+

A random sample of 100 automobile owners shows that, an automobile is driven on the average 23,500 kilometers per year with a standard deviation of 3900 kilometers. Assume the distribution of measurements to be normal.

a. Construct a 99% confidence interval for the average number of kilometers an automobile is driven. Also interpret this confidence interval in the context of the given problem

n = 100, $\bar{x} = 23500$, S = 3900 $A(1-\alpha)100\%$ c-T-for μ is $(X \pm Z_{M_2} \sqrt{n})$ $1-\alpha = 0.99 = 2 \frac{\alpha}{2} = 0.01 = 0.005 = 2.575$ $= \left[23500 \pm 1004.25 \right] = \left[22495.75, 24504.25 \right]$ That is we are 99% confident that the true average number of kilometers driven is between 22495.75 km a What can we assert with 99% confidence about the possible size of our error if we b estimate the average number of kilometers driven to be 23,500 kilometers per year? Z= 23500, Zo.005=2-575 5-3900, n= 100 = (1004.25)km (2.575)(3700) < Zay, S

7

Q.7 (3+2+3+5+6=19) The tensile strength (Y) of a paper product is related to the amount of hardwood in the pulp (X). Ten samples are produced in the pilot plant, and the data obtained are shown in the following table.

x	10	15	15	20	20	20	25	25	28	30
У	160	171	175	182	184	181	186	193	195	200
						·	<u> </u>			

where $\sum x_i = 208$, $\sum y_i = 1827$,	$\sum x_i^2 = 4684,$	$\sum y_i^2 = 335077,$	$\sum x_i y_i = 38665$	SSR = 1230.607
a. Calculate the least squares estima	ates for the regress	ion equation tensile	relating strength to	556 = 53.493
$\hat{y} = a + bx$	$b = \frac{S_{xy}}{2}$	·	y - bx	5e = 2.58C
,	522 663-	4] =]	82.7-(1.86)	(208)
	357.	6 =	144.01 -	$\rightarrow (1)$
	= (1.86		- 38665	- (208)(1827)
x = 144.43 y = 144.01 + 1.86 x	14	1) 1)	y = 663.	10
	Ĩ)	S _m	เพาะ ยัวนั้	いえ
			2 357.	6
		Syy	= 1284	- = SST

b. Find the error in estimating the tensile strength if the percent hardwood is 20.

$$\begin{split} \hat{Y}_{22} &= 144.01 + 1.86(20) = (181.12) \xrightarrow{181.216} (1) \\ \hat{Y}_{22} &= 144.01 + 1.86(20) = (181.12) \xrightarrow{181.216} (1) \\ \hat{F}_{23} = \hat{Y}_{23} - \hat{Y}_{20} = 182 - 181.12 = 0.8855 \text{ p}^{184} (1) \\ \hat{F}_{23} = 0.216 \\ \hat{F}_{23} = 1.86 (184 - 181.12 + 2.86) = 1.844 \\ \hat{F}_{23} = 1.86 (1663 + 4) \\ 12.84 + 1 = 0.458 - 10 \\ \hat{F}_{23} = 1.86 (1663 + 4) \\ 12.84 + 1 = 0.458 - 10 \\ \hat{F}_{23} = 0.458 - 10 \\ \hat{F}_{23} = 1.86 (1663 + 4) \\ 12.84 + 1 = 0.458 - 10 \\ \hat{F}_{23} = 0.$$

ą.

•

ŵ

.

a
$$loc (1 - d) Y$$
, $P: I$ for Y_{No} is $\left(Y_{0} \pm t_{N}\right) \left((+\frac{1}{n} + \frac{(x_{0} - \overline{x})^{2}}{S_{nn}}\right) S_{e}^{2}$
Here $d_{12} = c \cdot c \cdot c \cdot S = 3 + \frac{1}{N_{12}} = \frac{3}{N_{12}} \cdot 355$ as $V = N - L$
(1)
(1) $S_{e}^{2} = \frac{SSE}{N-2}$
 $= \frac{SSE}{N-2}$
 $= \frac{128 + 1 - i \cdot 85}{663 \cdot 4}$
 $= 128 + 1 - i \cdot 85} (663 \cdot 4)$
 $= 2.586$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 69 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 9.36$
(1) $S_{e} = 1.049$
 $13 \cdot 169 \pm 1.049$
 $13 \cdot 169$

e. If the engineer thinks: the higher the percent hardwood, the more the tensile strength. Do the data support his thought at 5% level of significance?

e. If the engineer thinks: the higher the percent that would, the interview of the data support his thought at 5% level of significance?
Ho:
$$\beta zo$$
, $(H_1, \beta > c)$ $(D_1, \beta > b - \beta c)$
Test statistic: tz $\frac{b - \beta c}{\int \frac{5e}{5}/s_{HR}} = \frac{1.855}{\int \frac{6.772}{5.657}/357.6} = (14.01)$
 $f = \frac{1.855}{\int \frac{6.772}{5.657}/357.6} = 13.565$
critical Region: $dz_{0,0}c_{S}$ $Vz - 2z - 8$ $t_{a,g} = 1.86$
So Rejection region is $t \ge 1.86$ (D_1, S)
 $\beta c_{1,g} = \frac{1.855}{I_{1,g}} = \frac{1.855}{I_{1,g}} = \frac{1.855}{I_{1,g}} = \frac{1.855}{I_{1,g}} = \frac{1.855}{I_{1,g}} = \frac{1.855}{I_{1,g}} = \frac{1.856}{I_{1,g}} = \frac{1.$