KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 112

STAT 302: STATISTICAL INFERENCE

FINAL EXAM

Saturday May 26, 2012

Name:_____ ID #: _____

☺ Important Notes:

- Write proper Mathematics
- State all your hypotheses, decisions and conclusions
- Show all your work, intermediate steps and final answer.
- Give reasons; clearly state any results you are using.

Question No	Full Marks	Marks Obtained
1	11	
2	5	
3	7	
4	10	
5	8	
6	6	
7	10	
8	8	
Total	55	

1) A large insurance company that hires many workers with disabilities wants to determine whether their disabilities affect such workers' performance. The following data were obtained:

	Performance		
Disability	Above Average	Average	Below Average
Blind	21	64	17
Deaf	16	49	14
No disability	29	93	28

At the 5% significance level decide whether it is reasonable to conclude that the disabilities have no effect on the workers' performance. State all your assumptions

2) Let X_1, \ldots, X_n be a random sample from the exponential distribution

$$f(x) = e^{-(x-\theta)} I_{(\theta,\infty)}(x).$$

- a) Find an unbiased estimator of θ .
- b) Show that this estimator is consistent.

3) Based on a sample of size *n*, find the method of moments estimators of α and β , the parameters of a gamma distribution. You can use the fact that the mean and variance of the gamma distribution are $\alpha\beta$ and $\alpha\beta^2$ respectively.

- 4) Let $X_1, ..., X_n$ be a random sample from a distribution with probability function $f(x, \theta)$.
 - a) Explain the concept of maximum likelihood estimation.
 - b) Derive the maximum likelihood estimator of θ , the parameter of a Poisson distribution.
 - c) If the number of accidents that occur daily can be modeled as a Poisson random variable. The number of accidents was observed for 10 days and the results were as follows: {7, 3, 1, 2, 4, 1, 2, 3, 1, 2}. Find the maximum likelihood estimate of the probability of 0 or 1 accidents in one day. Justify your answer.

- 5) Let X_1, \ldots, X_n be i.i.d random variables with density $f(x, \theta)$.
 - a) Define a sufficient statistic for θ .
 - b) If X is a Bernoulli random variable with $P(X = 1) = \theta$, find (<u>not just state</u>) a sufficient statistic for θ .
 - c) Use the definition in a) to prove that the statistic you found in b) is sufficient.

6) Let $X_1, ..., X_n$ be a random sample from a normal distribution with unknown mean μ and unknown variance σ^2 . Find an expression for the likelihood ratio statistic for testing

 $H_0: \sigma = \sigma_0$ vs. $H_a: \sigma \neq \sigma_0$

- 7) Let $X_1, ..., X_n$ be a random sample from a uniform distribution over the interval $(0, \theta)$.
 - a) Find the most powerful level α test for testing $H_0: \theta = \theta_0$ against $H_a: \theta = \theta_a$, where $\theta_a < \theta_0$
 - b) Is the test in a) uniformly most powerful? Explain.

8) In a sequence of independent Bernoulli trial with success probability θ , let *Y* indicate the number of trials until the first success, i.e.

 $P(Y = y) = (1 - \theta)^{y-1} \theta, \qquad y = 1, 2, \dots$

a) If θ has the following prior $f(\theta) = \frac{\Gamma(2\alpha)}{[\Gamma(\alpha)]^2} [\theta(1-\theta)]^{\alpha-1}$, find the posterior

distribution of $\theta \mid y$.

b) Find the Bayes estimators of θ and $\theta(1-\theta)$