KING FAHD UNIVERSITY OF PETROLEUM AND MINERAL

Department of Mathematical Sciences

Final Exam	MATH - 621	Sem 112
Student #:	Name:	

Show All Your Work. No Credits for Answers Not Supported by Work.

In this exam you can use any result in the book or notes. We use the symbols $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}, S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}, I = [0,1]$

Q1) (40 Points) Let *X* be the unit square in the plane ($X = I \times I$) with the dictionary order topology. That is (x, y) < (u, v) iff x < u or x = u and y < v. Consider *X* with the order topology. Show that:

- a. X is connected
- b. X is not path connected
- c. *X* is completely normal
- d. *X* is Compact (Hint: use the fact that in the order topology, X is compact if it is complete)
- e. X is first countable
- f. X is not separable
- g. X is Lindelöf
- h. X is not metrizable

Q2) (10 Points) Consider the space \mathbb{R}^{ω} . Is the space \mathbb{R}^{ω} normal in the product topology? In the uniform topology?

Q3) (10 Points) Let l^2 denote the subset of \mathbb{R}^{ω} consisting of all sequences $\mathbf{x} = (x_1, x_2, \cdots)$ such that $\sum x_i^2$ converges. (You may assume standard facts about infinite series). The l^2 metric is defined as follows, for any $\mathbf{x} = (x_i)$ and $\mathbf{y} = (y_i)$ we

define
$$d(x, y) = \left[\sum_{i=1}^{\infty} (x_i - y_i)^2\right]^{1/2}$$
.

Show that the l^2 space in the l^2 metric has a countable dense subset, and therefore has a countable base.

Q4) (10 Points) Let X be a locally compact Hausdorff space and let Y be the onepoint compactification of X. Show that X is second countable iff Y is metrizable.

Q5) (10 Points) (a) Show that if A is a retract in B^2 , then every continuous map $f: A \to A$ has a fixed point.

(b) Let X be a space homeomorphic to B^n show that any continuous map $f: X \to X$ has a fixed point.

Q6) (10 Points) Suppose that $h: S^1 \to S^1$ is nullhomotopic map.

a. Show that *h* has a fixed point.

b. Show that *h* maps some point *x* to its antipode -x.

Q7) (10 Points) Let $p: X \to Y$ be a covering map from a space X to a space Y.

- a. Show that *p* is open map.
- b. Let *Y* be connected. Show that if $p^{-1}(y_0)$ has *k* elements for some $y_0 \in Y$, then $p^{-1}(y)$ has *k* elements for each $y \in Y$, i.e., *X* is a *k*-fold cover of *Y*.

Q8) (30 Points) Let $A \subseteq X$ be retract of X and assume that $r: X \to A$ is a retraction. If $a_0 \in A$ show that

- a. The induced map $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ is surjection (onto).
- b. If $i: A \to X$ is the inclusion map, then the induced homomorphism $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ is injective.
- c. Furthermore, if A is deformation retract of X, then i_* is an isomorphism.
- d. Is S^1 a retract of B^2 ? Explain why.
- e. Show that $S^0 = \{-1,1\}$ is not retract of $B^1 = [-1,1]$
- f. Show that any continuous map $f: B^1 \to S^0$ has a fixed point.

Q9) (10 Points) A space *Y* is said to the *universal extension property* (UEP) if for each triple consisting of a normal space *X*, a closed subset *A* of *X*, and a continuous function $f: A \rightarrow Y$, there exist an extension of *f* to a continuous map of *X* into *Y*.

- (a) Show that \mathbb{R}^{J} has a UEP.
- (b) Show that if Y is homeomorphic to a retract of \mathbb{R}^{J} , then Y has the UEP.

Q10) (10 Points) Let Y be a normal space. Then Y is said to be an absolute retract if for every pair of spaces (Y_0 , Z) such that Z is normal and Y_0 is closed subspace of Z homeomorphic to Y, the space Y_0 is retract of Z. Assume that Y is compact.

- a. Show that if *Y* has the UEP then *Y* is an absolute retract .
- b. Show that if Y is an absolute retract then Y has the UEP. [Assume the Tychonoff theorem, so you know $[0,1]^{\prime}$ is normal. Imbed Y in $[0,1]^{\prime}$.]

Total score 150