King Fahd University of Petroleum & Minerals Department of Math. & Stat.

Math 568 - Final Exam (112) Time: 2 hours 30 mns

Tuesday, May 22, 2012

======================================	ID #	
	Problem 1	/10
	Problem 2 <u>– – – – –</u> Problem 3	$-\frac{/10}{\frac{-}{/5}}$
	Problem 4 — — — — — Problem 5	/5 /15
	Total	/45

Problem # 1. (10 marks) Given the one-dimensional problem

$$u_{tt}(x,t) - u_{xx}(x,t) = 0, \quad x > 0, \quad t > 0$$

$$u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \quad x \ge 0 \quad (I)$$

$$u_x(0,t) - u_t(0,t) = 2t, \quad t \ge 0$$

where ϕ and ψ are $C^2([0, +\infty))$, with $\phi(0) = \psi(0) = 0$. *a*. Find a continuous solution for (I) *b*. If $\phi(x) = x^2$ and $\psi(x) = 0$, write down the solution.

Problem # 2. (10 marks) Solve the Cauchy problem

$$u_{tt} - (u_{xx} + u_{yy}) = 0, \quad (x, y) \in \mathbb{R}^2, \quad t > 0$$

$$u(x, y, 0) = u_t(x, y, 0) = xy, \quad (x, y) \in \mathbb{R}^2$$

Problem # 3. (5 marks) Assume that u is a solution of

$$u_{xx} + u_{yy} = 0, \qquad (x, y) \in \Omega$$

where Ω and the boundary conditions are shown if the figure. Show that

$$0 \le u(x, y) \le 4, \qquad \forall (x, y) \in \Omega$$

Problem # 4. (5 marks) Consider

$$-\Delta u + u^3 = f \quad \text{in } \Omega \tag{*}$$
$$u = \varphi \quad \text{on } \partial \Omega$$

where Ω is a bounded domain with a smooth boundary. a. Show

$$(s^3 - r^3)(s - r) \ge 0, \qquad \forall s, r \in \mathbb{R}$$

b. Show that (*) has at most one solution.

Problem # 5. (15 marks) Given the problem

$$u_t(x,t) - u_{xx}(x,t) + 2u(x,t) = 0, \qquad x \in (0,\pi), \quad t > 0$$

$$u(x,0) = \sin^2 x - 4\cos x, \qquad x \ge 0$$

$$u_x(0,t) = u_x(\pi,t) = 0, \qquad t \ge 0$$

(II)

a. Let $v(x,t) = u(x,t)e^{2t}$. Show that v satisfies

$$v_t(x,t) - v_{xx}(x,t) = 0, \qquad x \in (0,\pi), \quad t > 0$$

$$v(x,0) = \sin^2 x - 4\cos x, \qquad x \ge 0$$

$$v_x(0,t) = v_x(\pi,t) = 0, \qquad t \ge 0$$

(III)

b. Solve (III) c. Show that there exists a constant C such that

$$|u(x,t)| \le Ce^{-2t}$$