- 1. Give the definitions of each of the following concepts,
 - $\bullet\,$ a field F

 $\bullet\,$ a vector space V over a field F

 $\bullet\,$ a subspace W of a vector space V

2. Let V be a vector space over a field F and $\{V_{\alpha}\}$ be a collection of subspaces of V. Show that $\bigcap_{\alpha} V_{\alpha}$ is a subspace of V.

3. Let W_1, \dots, W_n be subsets of a vector space V. Is $W = \sum_{k=1}^n W_k$ a subspace of V?

4. Let W_1 and W_2 be subspaces of a vector space V such that $V = W_1 + W_2$ and $W_1 \cap V_2 = \{0\}$.

Prove that for each vector v in V, there are unique vectors $v_1 \in W_1$ and $v_2 \in W_2$ such that $v = v_1 + v_2$.