KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Department of Mathematics and Statistics

S112 MATH 550 Instructor: Dr. B. Chanane EXAM I (Duration 90 Minutes)

Exercise 1 Let $T:\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ given by

T(x, y, z) = (x - 3y, x + 2y + z)

Let S_3 and S_2 be the standard bases for \mathbb{R}^3 and \mathbb{R}^2 respectively, and let $B_3 = \{(2,0,0), (0,1,3), (0,-1,0)\}$ and $B_2 = \{(2,1), (-1,1)\}$ be some ordered bases for \mathbb{R}^3 and \mathbb{R}^2 respectively.

(i) Show that T is a linear transformation.

(ii) Find the transition matrix P from B_2 to S_2 .

(iii) Find the transition matrix Q from B_3 to S_3 .

(iv) Find the matrix A_1 representing T relative to the bases S_3 and S_2 .

(v) Find the matrix A_2 representing T relative to the bases B_3 and B_2 .

(vi) How are the matrices A_1 and A_2 related through P and Q?

Exercise 2 Let W be the solution space of

$$\begin{cases} x + 2y - 2z = 0\\ -x + y + 6z = 0\\ 3x + 3y - 10z = 0 \end{cases}$$

(i) Find a basis B of W.

(ii) Extend B to a basis for $V = \mathbb{R}^3$.

(iii) Find a dual basis for V^* .

Exercise 3 Let T be a linear operator on the vector space \mathbb{R}^3 which is represented in the standard ordered basis by the matrix

$$A = \left(\begin{array}{rrr} 3 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{array}\right)$$

(i) Prove that T is diagonalizable by exhibiting a basis for \mathbb{R}^3 , each vector of which is a characteristic vector of T.

(ii) Write A as a linear combination of appropriate projections E_1, E_2 .