Kind Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 536 [Functional Analysis II] Second Semester 2011-2012 (112)

Final Exam: May 19, 2012

Time: 3 hours

- 2. (a) Define a unitary operator on a Hilbert space H. Give an example to show that a normal operator on H may not be unitary.
 (b) Let T be a one-one linear operator on a Hilbert space H such that T⁻¹ exists and D(T) = D(T⁻¹) = H. Then show that T* is one-to-one and (T*)⁻¹ = (T⁻¹)*.
- 3. (a) Show by means of example, that in the usual normed space (l₁, || · ||), a weak* convergent sequence my not be weak convergent. Also justify the statement that every weakly Cauchy sequence in l₁ is norm convergent.
 (b) Prove that P = P₁P₂ is a projection on a Hilbert space H if the projection P₁ and P₂ commute on H.
- 4. (a) Show that two closed subspaces Y and V of a Hilbert space H are orthogonal if and only if the corresponding projections satisfy $P_Y P_V = 0$ (b) Let X and Y be normed spaces and $T: X \to Y$ a linear operator. If dim $X < \infty$, then prove that T is compact.
- 5. (a) Let X be a complex Banach space and T a bounded linear operator from X into X. Then prove that the spectrum of T, σ(T), is a compact subset of C and σ(T) ⊂ {λ ∈ C : |λ| ≤ || T ||}.
 (b) Define T : l₂ → l₂ by T(x) = {0, x₁, x₂, ...} where x = {x₁, x₂, ...} ∈ l₂. Use part (a) to show that σ(T) = {λ ∈ C : |λ| ≤ 1}.
- 6. (a) Prove that the spectrum $\sigma(T)$ of a bounded linear and self-adjoint operator $T: H \to H$ (complex Hilbert space) is real. b) Let T be a compact self-adjoint linear operator on a complex Hilbert space H. Prove that there is an eigen value λ of T such that $|\lambda| = ||T||$ and there is a corresponding eigen vector x such that $Tx = \lambda x, ||x|| = 1$, and $|\langle Tx, x \rangle| = ||T||$.