Math 536 [Functional Analysis II] Second Semester 2011-2012 (112)

Exam II April 28, 2012 Time: 2	hours
--------------------------------	-------

Q1. (a) Let *Pbe* an orthogonal projection on an inner product space *X*. If *N*(*P*) is the null space of *P* and *R*(*P*) is the range of *P*, then show that $N(P) = [R(p)]^{\perp}$.

(b) If P is a bounded linear projection on a Hilbert space H, then show that P is self-adjoint and idempotent.

Q2. (a) Let P_1 and P_2 be projections on a Hilbert space *H*. If $P = P_1 + P_2$ is a projection, then prove that *P* projects *H* onto $Y = Y_1 \bigoplus Y_2$ where $P_1(H) = Y_1$ and $P_2(H) = Y_2$.

(b) Let *K* be a nonempty closed convex subset of a Hilbert space *H*. For $x \in H, z \in K$ is a projection of *x* if and only if $\langle x - z, y - z \rangle \leq 0$ for all $y \in K$. Use this fact to prove that the projection operator $P_K(x)$ of *H* onto *K* satisfies $|| P_K(u) - P_K(V) || \leq || u - V ||$ for all $u, V \in H$.

Q3. (a) Let $\{T_n\}$ be a sequence of compact linear operators from a normed space X into a Banach space Y. If $\{T_n\}$ is uniformly operator convergent to T (i.e. $|| T_n - T || \to 0$ as $n \to \infty$), then prove that limit operator T is compact.

(b) Let $T: l_2 \rightarrow l_2$ be defined by

$$T(x) = \frac{\xi_j}{i}$$
 where $x = \{\xi_j\} \epsilon l_2$

Use above part (a) to show that *T* is a compact operator.

Q4. (a) Let X and Y be normed spaces and $T \in BL(X, Y)$, the space of all bounded linear operators from X into Y. Define Banach adjoint T^X of T from Y^* to X^* . Use an appropriate consequences of the Hahn – Banach theorem to prove that $|| T^X || = || T ||$.

(b) Let X and Y, be normed spaces. If T is a compact linear operator from X into Y, then verify that T^{\times} is also compact.