King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 536 [Functional Analysis II] Second Semester 2011-2012 (112)

Exam I: March 14, 2012,

Time 2 hours:

- **Q1.** (a) Let H be an infinite dimensional Hilbert space. Use an appropriate result to prove that H has an infinite orthonormal subset.
 - (b) Consider the complete orthonormal sequence $\varphi_1(x) = \frac{1}{\sqrt{2\pi}}, \varphi_{2n}(x) = \frac{1}{\sqrt{\pi}} \sin nx, \varphi_{2x+1} = \frac{1}{\sqrt{\pi}} \cos nx \text{ in } L_2[-\pi, \pi].$ Apply parseval's formula to the function f(x) = x $(-\pi \le x \le \pi)$ and show that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$
- **Q2.** (a) Let *H* be a Hilbert space and $T \in L(H)$, the space of all bounded linear Operators on *H*. Prove that there exists a unique operator $T^* \in L(H)$ such that $\langle Tx, y \rangle = \langle x, T_y^* \rangle$ for all $x, y \in H$.
 - (b) Suppose that *H* is a complex Hilbert space and $T \in L(H)$. Then show that *T* is self-adjoint if and only if $\langle Tx, x \rangle$ is real for each $x \in H$.
- **Q3.** (a) Let T be a bounded linear operator on a Hilbert space H. If T is normal, then show that $||T^2|| = ||T||^2$
 - (b) If *S* and *T* are positive operators on a Hilbert space such that ST = TS, then prove that *ST* is positive.
- **Q4.** (a) Let X be a normed space with dual X^* . Prove that the closed ball $B_1^* = \{f \in X^* : ||f|| \le 1\}$ is compact with respect to weak*-topology.
 - (b) Prove that every separable infinite-dimensional Hilbert space is linearly isometric to (l₂, ||⋅||₂).