King Fahd Univ. of Petroleum and Minerals Faculty of Sciences Department of Mathematics and Statistics

FINAL EXAM (MATH. 465-112)

Name:

ID:

<u>Prob. 1</u>

Show that the zero solution of $y' = -y + y^2$ is asymptotically stable. Sketch all solutions in the (t, y) space. Sketch all solutions in the phase space.

<u>Prob. 2</u>

Show that for the linear system y' = A(t)y, where A(t) is continuous for $0 \le t < \infty$, stability or asymptotic stability of the zero solution implies that for of every solution.

<u>Prob. 3</u>

Determine for which of the following scalar equations the zero solution is stable, asymptotically stable or unstable

(a)
$$u'' + 2k^2u' + \alpha^2 u = 0$$

(b)
$$u^{(4)} - 2u'' + u = 0.$$

<u>Prob. 4</u>

Use the Routh-Hurwitz criterion to derive a criterion for the asymptotic stability of the zero solution of $u^{(4)} + pu''' + qu'' + ru' + su = 0$.

<u>Prob. 5</u>

Show that if $\lambda(t)$ is a continuous nonnegative function on $0 \le t < \infty$ such that $\lim_{t\to\infty} \lambda(t) = 0$, then $\lim_{t\to\infty} \int_t^{t+1} \lambda(s) ds = 0$.

<u>Prob. 6</u>

If n = 2 and $V(y_1, y_2) = \int_0^{y_1} g(\sigma) d\sigma + y_2^2/2$, where g is a continuous function and $\sigma g(\sigma) > 0$ for $\sigma \neq 0$, prove that V is positive definite on the

whole plane. What if $\sigma g(\sigma) \ge 0$?

<u>Prob. 7</u>

Analyze the simple pendulum equation $\theta'' + \sin \theta = 0$ in the neighborhood of (0,0). Sketch the phase portrait for $|y_1| < \pi$ and for $|y_1| < 2\pi$.

<u>Prob. 8</u>

Determine an estimate of the region of asymptotic stability in the phase plane for the equation $u'' + \varepsilon (1 - u)^2 u' + u = 0$.