King Fahd Univ. of Petroleum and Minerals Faculty of Sciences Department of Mathematics and Statistics

Major 2 (MATH. 465-112)

Name: ID:

<u>Prob. 1</u>

Consider the system y' = A(t)y + g(t). Suppose that A(t) and g(t) are continuous for $-\infty < t < \infty$ and that $\int_{-\infty}^{+\infty} |A(t)| dt < \infty$ and $\int_{-\infty}^{+\infty} |g(t)| dt < \infty$. Show that the solution $\phi(t)$ exists for $-\infty < t < \infty$ and compute a bound for $|\phi(t)|$ valid for $-\infty < t < \infty$.

<u>Prob. 2</u>

Show that if a real homogeneous system of two first order equations has a fundamental matrix $\begin{pmatrix} e^{it} & e^{-it} \\ ie^{it} & -ie^{-it} \end{pmatrix}$, then $\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$ is a also a fundamental matrix. Find another real fundamental matrix.

<u>Prob. 3</u>

Show that if all eigenvalues have real part negative or zero and if those eigenvalues with zero real parts are simple, there exists a constant K > 0 such that $|e^{tA}| \leq K$, $0 \leq t < \infty$ and hence every solution of y' = Ay is bounded on $0 \leq t < \infty$.

<u>Prob. 4</u>

Sketch the phase portrait of x'' - 2x' + x = 0. Identify the origin and decide whether it is an attractor.

<u>Prob. 5</u>

Compute the Lipschitz constant K for $f(t, y) = t^2 + y^4$ in the region $\{(t, y) : |t| \le 1, |y| \le 3\}$.

<u>Prob. 6</u>

Construct the successive approximations to the solution ϕ of y' = y that satisfies $\phi(0) = 1$.

<u>Prob. 7</u>

State and prove a uniqueness theorem for solutions of y'' + g(t, y) = 0, $y(0) = y_0, y'(0) = z_0$ where g is a given function defined on a rectangle

$$R = \{(t, y) : |t| \le a, |y - y_0| \le b\}.$$

<u>Prob. 8</u>

Consider the example: $y' = y^2$, y(0) = 1 studied in class. We found that solutions exist on (-1/4, 1/4). Consider now the continuation of the solution ϕ to the right through the point (1/4, 4/3). Show that on any rectangle

$$R = \{(t, y) : |t - 1/4| \le a, |y - 4/3| \le b\}$$

we have $M = \max_R y^2 = \left(\frac{4}{3} + b\right)^2$. Deduce that $\alpha_1 = 3/16$. This now gives existence on $-1/4 \le t \le 7/16$.)