$\frac{\text{Test} \sharp 1 \text{ Math} 311, \text{ sec } 1}{\text{Net Time Allowed: 45 minutes}}$

Name:

ID # :

Serial:

Exercise1:(8 pts) Let f be a continuous function on \mathbb{R} and has the following properties: (i) $\lim_{x \to 0} f(x) = 1$ and $f(x_1 + x_2) = f(x_1) f(x_2), \ \forall x_1, x_2 \in \mathbb{R}$ Prove that: a)- $f(x) > 0, \ \forall x \in \mathbb{R}$. b)- $f(nx) = [f(x)]^n \ \forall n \in \mathbb{N}$.

c)- If f(1) = 1 then f is constant.

Exercise2:(06 pts)

Show that if f and g are uniformly continuous on $A \subseteq \mathbb{R}$ and if they are both bounded on A, then their product fg is uniformly continuous on \mathbb{R} .

Exercise3:(07 pts) Let f be the Dirichlet function defined by:

$$f(x) = \begin{cases} 1 & if x \text{ is rational} \\ 0 & if x \text{ is irrational} \end{cases}$$
(1)

Show that f is not continuous at any point of \mathbb{R} .

<u>Exercise4:</u>(09 pts) Let I = [a, b] be a closed bounded interval and let $f : I \longrightarrow \mathbb{R}$ be continuous on I. Prove that f is bounded on I. (Hint: Use Bolzano-Weirstrass Theorem.)