KFUPM – Department of Mathematics and Statistics – Term 112 MATH 280 Exam 3 (Tuesday, May 01, 2012) Duration: 2 Hours

NAME:______ ID:_____ Section: _01_

Exercise 1 (10 points)

Let $V = R^3$ be the Euclidean space (with the standard inner product) and set $S = \{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \}.$

Apply Gram-Schimdt process to construct an orthonormal basis from the basis S.

Exercise 2 (20 points)

Let V and W be two *n*-dimensional vector spaces over the same field, and with bases respectively $S = \{v_1, ..., v_n\}$ and $T = \{w_1, ..., w_n\}$. Prove that there is a unique linear transformation $L: V \to W$ such that $L(v_i) = w_i$ for every i = 1, 2, ..., n.

Exercise 3 (20 points)

Let $V = M_3(R)$ be the vector space of all 3×3 matrices with real coefficients and set $\begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$

 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$. Let $L: V \to V$ be the linear transformation defined by L(B) = AB.

1- Find KerL and a basis for KerL.

2- Find Range(L) and a basis for Range(L).

Exercise 4 (20 points)

Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation given by $L \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a+b \\ b+2c \end{pmatrix}$ and let S_1 and T_1 be the standard bases for R^3 and R^2 respectively. Set $S_2 = \{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \}$ and $T_2 = \{ \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \end{pmatrix} \}.$

1-Find the matrix $[L]_{S_1,T_1}$ representing L with respect to the bases S_1 and T_1 . 2-Find the matrix $[L]_{S_2},_{T_2}$ representing L with respect to the bases S_2 and T_2 . 3-Find the relation between $[L]_{S_1},_{T_1}$ and $[L]_{S_2},_{T_2}$

Exercise 5 (20 points)

Let $A = (a_{ij})$ and B be $n \times n$ matrices and α a real number.

1-Use the **definition of** det *A* in terms of permutations to prove that det $\alpha A = \alpha^n \det A$.

2-Prove that $adj(A^T) = (adj(A))^T$

3-Prove that ABadj(AB) = Aadj(A)Badj(B)

4-Pove that if A and B are nonsingular matrices, then adj(AB) = adj(A)adj(B)

Exercise 6 (10 points)

Use the cofactor methods to find the inverse of the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$