Department of Mathematics and Statistics, KFUPM Math 280, Term 112 Exam 2, Due by April 4, 2012 Name and ID

- **Exercise 1**(10 points). Let $V = \mathbb{R}^3$ and $S = \{U_1, U_2, U_3\}$ its standard basis. (1) Find a basis $T = \{V_1, V_2, V_3\}, T \neq S$ and a 3×3 matrix A such that $\{AV_1, AV_2, AV_3\}$ is not a basis for V. (2) Find a 3×3 matrix A such that $\{AV_1, AV_2, AV_3\}$ is a basis for V.

Exercise 2(10 points).

Let V be the vector space of all continuous real-valued functions and W the subspace of V spaned by $\{cost, sint, t\}$.

(1) Find a basis for W.

(2) Find dimW.

Exercise 3(10 points).

Let $V = \mathcal{M}_{n \times n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices and A a fixed $n \times n$ matrix. Let $\phi_A : V \to \mathbb{R}$ defined by $\phi_A(B) = Tr(AB)$ where Tr(M) is the trace of the matrix M.

(1) Prove that ϕ_A is a homomorphism.

(2) Is ϕ_A an isomorphism?

4

Exercise 4 (10 points).

Let V and W be two vector spaces over a field K and let $\phi: V \to W$ be an isomorphism.

(1) Prove that $\phi^{-1}: W \to V$ is an isomorphism. (2) Prove that if $S = \{U_1, \dots, U_n\}$ is a basis for V, then $\phi(S) = \{\phi(U_1), \dots, \phi(U_n)\}$ is a basis for W.

(3) Prove that dimV = dimW.

Exercise 5 (10 points).

Let $V = \mathcal{M}_{n \times n}(\mathbb{R})$ be the vector space of all $n \times n$ matrices and W the subset of V consisting of all symmetric matrices.

- (1) Prove that W is a vector space.
- (2) Find dimW.
- (3) As an application, Find a basis for W when n = 3.

Exercise 6(10 points). Let $V = \mathbb{P}_2 = \{f \in K[X] | deg(f) \le 2\}$ and set $S = \{1, X, X^2\}$ and $T = \{1 - X, 1 + X, 1 - X^2\}$.

(1) Prove that S and T are bases for V.

(2) Find the transition matrix from S to T.

Exercise 7(10 points).

Let $V = \mathbb{R}_3$, $S = \{U_1 = (0, 1, 1), U_2 = (1, 0, 1), U_3 = (1, 1, 0)\}$ be a basis for V and set $V_1 = (1, -1, 1), V_2 = (0, 1, 2)$ and $V_3 = (0, 0, 2)$.

(1) Verify that $\{V_1, V_2, V_3\}$ are linearly independent.

(2) Verify that the coordinate vectors $[V_1]_S, [V_2]_S$, and $[V_3]_S$ are linearly independent.

Generalizations. Prove that if W is an *n*-dimensional vector space, T is a basis for W and W_1, \ldots, W_n are linearly independent, then the coordinate vectors $[W_1]_T, \ldots, [W_n]_T$ are linearly independent.

Exercise 8(10 points).

Let A be an $n \times n$ non-singular matrix and B be an $n \times m$ matrix with rank(B) = p. (1) Find rank(AB).

(2) Set
$$M = \begin{pmatrix} 1 & 3 & 2 \\ 2 & -1 & 5 \\ 3 & 2 & 0 \end{pmatrix}$$
 and $N = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 3 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \end{pmatrix}$

Find rank(N) and rank(MN).

Exercise 9(10 points).

Let V be the vector space of all real-valued continuous functions, V_{even} its subspace of all even functions and V_{odd} its subspace of all odd functions.

(1) Prove that every element $f \in V$ can be written as $f = f_1 + f_2$ where $f_1 \in V_{even}$ and $f_2 \in V_{odd}$. (2) Prove that $V_{even} \cap V_{odd} = \{0\}$.

Exercise 10(10 points).

Let V be the vector space of all real-valued continuous functions on the closed inter-val [a, b] and consider the map $\phi : (V \times V) \longrightarrow \mathbb{R}$ defined by $\phi(f, g) = \int_a^b f(t)g(t)dt$. (1) Prove that ϕ is an inner product. (2) Find the distance from f(t) = t to $g(t) = e^t$.