KFUPM – Department of Mathematics and Statistics – Term 112 MATH 280 Exam 1 (Duration = 90 minutes)

NAME:______ ID:_____ Section: _01_

Exercise 1 (15 points)

1-Use the **augmented matrix and echelon form** to solve the following system.

	$\left[\frac{dx}{dt}-\right]$	$\frac{dy}{dt}$ +	$\frac{dz}{dt} = 1$
(S) ·	$\left\{\frac{dx}{dx}\right\}$	$\frac{dy}{dy}$ –	$\frac{dz}{dz} = -1$
	$\left \frac{dt}{dt} - \right $	$2\frac{dt}{dt}$ +	$\frac{dt}{2\frac{dz}{dt}} = 1$

2-Solve the boundary value Problem x(0) = 0, y(0) = 1, z(0) = 2

Exercise 2 (15 points)

1-Prove that every $n \times n$ matrix A can be written as A = S + K where S is an $n \times n$ symmetric matrix and T is an $n \times n$ skew-symmetric matrix.

2-Application
$$A = \begin{pmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Exercise 3 (15 points)

Consider a linear system (S) of the form AX = Y where A is an $n \times n$ matrix and $Y \neq 0$. Let X_1, X_2, \dots, X_n be solutions of the system (S). 1-Verify that $X_1 + X_2$ is not a solution of the system (S).

2-Verify that $2X_1 - 2X_2 + X_3$ is a solution of the system (S).

3-Under which condition on $\alpha_1, \alpha_2, \dots, \alpha_n, \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n$ is a solution of the system (S).

Exercise 4 (15 points) Find all 3×3 matrices *A* such that the commutator [A,...] = 0. Notice that [A, B] = AB - BA for any matrix *B* **Exercise 5** (20 points). Use elementary row operations to find the inverse of the matrix $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

	(1	1	-1)
A =	1	1	1
	2	-1	1)

Exercise 6 (20 points) Determine whether W is a subspace of the given space V. **1-** $V = R_3$ and $W = \{(a,b,c) \in R_3 | 2a - b + 2c = 0\}$

2-Find two vectors u, v such that W = Span(u, v)

3-V = C(R) the vector space of all continuous function and W the subset of all continuous odd functions.