Version 1

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 260

Final Exam, Semester II, 2011-2012 Saturday May 26, 2012

Net Time Allowed: 180 minutes (7:30am-10:30am)

Name:			
ID:	 —Section:—		

Q#	Marks	Maximum Marks
1		15
2		15
3		25
4		15
5		10
6		15
7-15		45
Total		140

- 1. Write clearly.
- 2. Show all your steps.
- 3. No credit will be given to wrong steps.
- 4. Do not do messy work.
- 5. Calculators and mobile phones are NOT allowed in this exam.
- 6. Turn off your mobile.

Note:

For Part II you should write your answers in the box below.

Part II

7	8	9	10	11	12	13	14	15

Part I

1. Find the general solution of the differential equation

$$y'' + 9y = 2\cos 3x + 3\sin 3x.$$

2. Use the method of variation of parameters to find a particular solution of

$$(x^2 - 1)y'' - 2xy' + 2y = (x^2 - 1)^2.$$

Hint: $(y_1 = x \text{ and } y_2 = 1 + x^2 \text{ form a fundamental set of solutions for the associated homogeneous differential equation.)}$

3. Let
$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$$
.

- (a) Show that the characteristic polynomial of A is: $P_A(\lambda) = (\lambda 1)(\lambda 2)^2$
- (b) Find the eigenvalues and bases for the corresponding eigenspaces of A.
- (c) Is A diagonalizable?
- (d) Find the Jordan canonical form of A.

4. Solve the following system: Y' = AY, where

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{array} \right].$$

5. Convert the following system of differential equations into a system of first order differential equations in matrix form.

$$x'' = 5x - 4y$$
$$y'' = -4x + 5y + \sin t$$

.

6. Let α, β be real numbers. Consider the initial value problem

$$y'' + \alpha y' + \beta y = 0$$
, $y(0) = 3$, $y'(0) = 5$.

Suppose that the differential equation has a fundamental set of solutions $\{y_1, y_2\}$, with $y_1 = e^{-x}$ and the Wronskian $\omega(y_1, y_2) = 4e^{2x}$.

- (a) Show that e^{3x} is a solution to the differential equation.
- (b) Determine α, β .
- (c) Solve the initial value problem.

- 7. A tank initially contains 600 liters of salt water with concentration $\frac{1}{15}$ kg/L. Suppose that a solution of salt water with concentration $\frac{1}{5}$ kg/L flows into the tank at a rate of 25 L/min. The solution in the tank is kept uniform. The solution flows out of the tank at a rate of 50 L/min. The amount of a salt in the tank at the end of 18 minutes is equal to:
 - (a) 20 Kg
 - (b) 41 Kg
 - (c) 35 Kg
 - (d) 25 Kg
 - (e) 36 Kg

- 8. Which statements among the following is TRUE?
 - (a) $\{(x,y) \in \mathbb{R}^2 | xy = 1\}$ is a subspace of \mathbb{R}^2 .
 - (b) $\{(x,y) \in \mathbb{R}^2 | 2x y = 1\}$ is a subspace of \mathbb{R}^2 .
 - (c) $\{(x,y) \in \mathbb{R}^2 | x 2y = 0\}$ is a subspace of \mathbb{R}^2 .
 - (d) $\{(x,y) \in \mathbb{R}^2 | xy = 0\}$ is a subspace of \mathbb{R}^2 .
 - (e) $\{(x,y) \in \mathbb{R}^2 | x^2 = y^2 \}$ is a subspace of \mathbb{R}^2 .

9. Let A be a 3×3 matrix such that rank(A) = 1. Then:

- (a) $\dim(RS(A)) = 2$.
- (b) $\dim(NS(A)) = 2$.
- (c) A is a nonsingular matrix.
- (d) $\dim(CS(A)) = 2$.
- (e) rank(2A) = 2.

- 10. Let $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{bmatrix}$.
 - (a) $\det(A) = 12$.
 - (b) $\det(A) = 9$.
 - (c) $\det(A) = 8$.
 - (d) $\det(A) = 6$.
 - (e) det(A) = 5.

11. Let A be a 3×3 matrix such that $A^2 - 2A + 13I_3 = 0$. Then:

- (a) A is a nonsingular matrix.
- (b) rank(A) < 3.
- (c) The reduced echelon form of *A* is $A_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
- (d) There exists $\lambda \in \mathbb{R}$ such that $A = \lambda I_3$.
- (e) $\det(A 2I_3) = 0$.

12. Let $S = \{v_1, v_2, v_3\}$ where

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 9 \\ 0 \end{bmatrix}, v_3 = \begin{bmatrix} 3 \\ 3 \\ 2 \end{bmatrix}.$$

Then:

- (a) S is linearly independent but does not span \mathbb{R}^3 .
- (b) S spans \mathbb{R}^3 and S is linearly dependent.
- (c) S does not span \mathbb{R}^3 and S is linearly dependent.
- (d) S forms a basis for \mathbb{R}^3 .
- (e) None of the above.

13. The solution of the linear first order differential equation

$$(x^2+1)\frac{dy}{dx} + 3xy = 6x, \quad y(0) = 3.$$

- at x = 2 is:
- (a) $2 + (5)^{-3/2}$
- (b) $2 + 2(5)^{3/2}$
- (c) 0
- (d) $2 + 3(5)^{3/2}$
- (e) $2 (5)^{-3/2}$

14. The value of the general solution at x = 1 of the Bernoulli differential equation

$$\frac{dy}{dx} + \left(\frac{6}{x}\right)y = 3y^{4/3}$$

- is:
- (a) $y(1) = \frac{1}{C^3}$
- (b) $y(1) = C^3$
- (c) $y(1) = \frac{1}{(C-1)^3}$
- (d) $y(1) = \frac{1}{(1+C)^3}$
- (e) 0

15. Given that $y_1 = x \cos(\ln x)$ is a solution of the differential equation

$$x^2y'' - xy' + 2y = 0.$$

The value of the second solution y_2 (Using reduction of order) at x=e is qual to:

- (a) 0
- (b) $e \sin 1$
- (c) πe
- (d) 1
- (e) $e \cos 1$